

Correlation between anisotropy, slow relaxation, and spectroscopic behaviour: the Ln(trensal) family

Lorenzo Sorace

Department of Chemistry & INSTM, University of Florence, Italy lorenzo.sorace@unifi.it

> Acknowledgments **E. Lucaccini,** J.P.Costes, M. Perfetti, R. Sessoli

Karlsruhe 11 October 2013- Workshop on magnetic anisotropy ECMM2013

- Introduction
- Luminescence and electronic structure
- EPR and static magnetic behaviour
- Analysis of dynamic behaviour
- Correlation to the anisotropy

$$\hat{\mathbf{H}}_{\mathbf{LF}}^{Stev} = \sum_{k=2,4,6} \rho^k \sum_{q=-k}^{k} A_k^q \left\langle r^k \right\rangle \hat{\mathbf{O}}_{\mathbf{k}}^{\mathbf{q}}$$

 $A_k^q \langle r^k \rangle$ is a parameter, ρ^k is a number (tabulated) $\hat{\mathbf{O}}_k^q$ are operator equivalents of the crystal field potential which can be expanded in terms of J_+, J_-, J_z polynomials

Most used in magnetic and EPR studies
It becomes too involved for treatment of excited multiplets

$$\hat{\mathbf{H}}_{\mathbf{LF}}^{Wyb} = \sum_{k=0}^{\infty} \left[B_0^0 C_0^0(i) + \sum_{q=1}^k B_q^k \left(C_{-q}^k(i) + \left(-1\right)^q C_q^k(i) \right) + i B'_q^k \left(C_{-q}^k(i) - \left(-1\right)^q C_q^k(i) \right) \right] \right]$$

 B_q^k are parameters $C_q^k(i)$ are related to spherical harmonics by: $C_q^k(i) = \sqrt{\frac{2k+1}{4\pi}}Y_q^k(i)$

The resulting matrix elements are:

$$\left\langle l^{n} \tau SLJM_{J} \left| \sum_{i} C_{q}^{k}(i) \left| l^{n} \tau' S'L'J'M_{J}' \right\rangle = (-1)^{S+L'+2J-M_{J}+k+1} 7 \left[(2J+1)(2J'+1) \right]^{1/2} \begin{pmatrix} 3 & k & 3 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} J & k & J' \\ -M_{J} & q & M_{J}' \end{pmatrix} \left\{ \begin{matrix} J & J' & k \\ L & L & S \end{matrix} \right\} \left\langle l^{n} \tau SL \left\| U^{k} \right\| l^{n} \tau' SL' \right\rangle$$

Allow direct comparison with luminescence data in literature
Easy inclusion of excited multiplets
Not much used in molecular magnetism
(but see CONDON program)

Ε

The importance of luminescence spectroscopy

Ln(trensal) family

Space group: P-3c1 Ln(III) ions on a C_3 axis

B. M. Flanagan, P. V. Bernhardt, E. R. Krausz, S. R. Lüthi, M. J. Riley, Inorg. Chem. 2002, 41, 5024-5033

Luminescence spectra

UNIVERSITÀ Degli studi

IRENZE

Luminescence spectra

Table 1. Experimental Energy Levels and Transition Line Strengths for Er(trensal)

		energy	(cm ⁻¹)	obsd intens $(10^{-42} \text{ esu}^2 \text{ cm}^2)$				energy (cm ⁻¹)		obsd intens (10 ⁻⁴² esu ² cm ²	
multiplet	irrep ^a	obsd	calc	$S_{\sigma}[D^2]$	$S_{\pi}[D^2]$	multiplet	irrep ^a	obsd	calc	$S_{\sigma}[D^2]$	$S_{\pi}[D^2]$
4I _{15/2}	$\Gamma_{4.5}$	0	0	0.005^{b}		⁴ F _{9/2}	Γ_6	15 302	15 307	15.8	1.4
	Γ4,5	54	54	0.235			Γ4,5	15 328	15 317	16.4	4.2
	Γ_6	102	102	0.176			Γ45	15 382	15 395	63.0	6.8
	$\Gamma_{4,5}$	110	110	0.202			Γ_6	15 538	15 552	100.2	7.2
	Γ_6	299	299	0.033			$\Gamma_{4,5}$	15 562	15 569	14.5	21.1
	$\Gamma_{4.5}$	568	567	1.000		$4S_{3/2}$	$\Gamma_{4,5}$	18 395	18 420	1.3	3.8
	Γ_6	610	612	0.753			Γ_6	18 469	18 484	92.0	5.9
	$\Gamma_{4.5}$	642	641	0.229		$^{2}H_{11/2}$	Γ45	19 157	19 186	34.3	12.1
⁴ I _{13/2}	Γ4,5	6594	6590	21.9	14.9		Γ_6	19 165	19 194	87.0	7.2
	Γ_6	6611.5	6613	10.4	1.8		Γ45	19 193	19 200	83.6	29.9
	Γ_{45}	6620.5	6630	34.1	31.4		Γ_{45}	19 371	19 359	143.5	32.7
	Γ4.5	6690	6706	32.8	11.5		Γ_6	19 379	19 386	121.0	8.3
	Γ4.5	6909	6937	19.0	0.0		Γ45	19 412	19 404	56.2	20.1
	Γ_6	6928	6949	132.7	10.6	${}^{4}F_{7/2}$	Γ45	20 530	20 516	4.6	20.1
	$\Gamma_{4.5}$	6939	6967	12.2	0.0		Γ45	20 613	20 615	2.5	25.3
${}^{4}I_{11/2}$	Γ_{45}	10 290.5	10 270	17.2	2.1		Γ_6	20 679	20 665	6.5	1.9
11/2	Γ_6	10 300.5	10 279	1.1	0.0		Γ45	20 738	20 741	1.7	4.9
	$\Gamma_{4.5}$	10 315.5	10 302	2.5	0.0	${}^{4}F_{5/2}$	Γ45	22 244	22 234	3.7	13.6
	Γ4.5	10 444	10 449	0.0	14.6		Γ_6	22 261	22 240	4.2	2.5
	Γ_6	10 448.5	10 459	27.5	14.8		Γ4,5	22 353	22 326	1.6	11.9
	Γ_{45}	10 509.5	10 466	0.0	0.0	${}^{4}F_{3/2}$	Γ_{45}	22 607	22 604	0.8	7.2
⁴ I _{9/2}	Γ45	12 321	12 283	4.8	1.7		Γ_6	22 734	22 736	3.1	1.6
	Γ_6	12 532	12 531	1.5	0.0	$^{2}H_{9/2}$	Γ45	24 434	24 424	16.5	2.2
	Γ45		12 589	7.2	0.10		Γ_6	24 619	24 645	10.0	1.2
	Γ_6	12 768	12 728	21.5	2.4		Γ45	24 628	24 672	5.0	3.9
	Γ_{45}	12 806	12 774	11.3	2.0		Γ_{45}	24 798	24 782	2.7	2.8
							Γ6	24 841	24 836	11.7	2.9

About 50 observed transitions!

B. M. Flanagan, P. V. Bernhardt, E. R. Krausz, S. R. Lüthi, M. J. Riley, Inorg. Chem. 2002, 41, 5024-5033

Ln(trensal) family

Best fit LF parameters of luminescence data

	Dy	Er
B_0^2	-671(39)	-720
B_0^4	-186(77)	-44(106)
B_{3}^{4}	-2153(34)	-2121(83)
B_0^6	1241(57)	988(36)
B_{3}^{6}	439(41)	53(49)
<i>B</i> ^{'6} ₃	-284(83)	92(53)
B_6^6	660(49)	545(34)
B'_{6}^{6}	145(137)	311(36)

Ground multiplets splittings

Dy	Er
0	0
50	54
98	102
172	109
414	321
577	568
645	619
787	651

$$\hat{H}_{lf} = B_0^2 \mathbf{C}_0^2 + B_0^4 \mathbf{C}_0^4 + B_3^4 \left(\mathbf{C}_{-3}^4 - \mathbf{C}_3^4\right) + B_0^6 \mathbf{C}_0^6 + B_3^6 \left(\mathbf{C}_{-3}^6 - \mathbf{C}_3^6\right) + iB_3^{\prime 6} \left(\mathbf{C}_{-3}^6 + \mathbf{C}_3^6\right) + B_6^6 \left(\mathbf{C}_{-6}^6 + \mathbf{C}_6^6\right) + iB_6^{\prime 6} \left(\mathbf{C}_{-6}^6 - \mathbf{C}_6^6\right)$$

B. M. Flanagan, P. V. Bernhardt, E. R. Krausz, S. R. Lüthi, M. J. Riley, Inorg. Chem. 2002, 41, 5024-5033

- |13/2> component is dominant for the ground state
- \bullet Small m_J components are dominant for the excited state

Dy(trensal) wavefunction composition

•small m_J components are dominant in the ground state •Large |+3/2> and |-9/2> components in the first exc. state

università degli studi FIRENZE

DIPARTIMENTO

	Dy(tre	ensal)	Er(trensal)			
	exp	calc	exp	calc		
g _{//}	1.8 ± 0.1	2.6	11.8 ± 0.4	13		
g_{\perp}	9.4 ± 0.5	9.6	3.6 ± 0.1	1.2		

DC magnetic data/2

DC magnetic data/1

	Dy(tre	nsal)	Er(trensal)			
	exp	calc	exp	calc		
g _{//}	1.8 ± 0.1	2.6	11.8 ± 0.4	13		
${\bf g}_{\perp}$	9.4 ± 0.5	9.6	3.6 ± 0.1	1.2		

Ground doublet anisotropy

g² tensor shape

Er(trensal) Easy axis

Dy(trensal) Hard axis

Er(trensal) AC susceptibility

Field induced slow relaxationSlowest at 900 Oe

•As expected for an easy axis rare-earth complex, frequency dependence of χ "(T) is observed at low T

Dy(trensal) dynamic behaviour

- Both systems are far from linear (Arrhenius) behaviour
- The relaxation is not related to magnetic anisotropy barrier

Does dilution affect this behaviour?

Y:Er(trensal) 20:1

Y:Dy(trensal) 32:1

System is still far from Arrhenius behaviour

Slow relaxation persist in diluted system

- •EPR and DC data confirm the LF parametrization obtained by luminescence spectrscopy
- Dy(trensal) is hard-axis type, Er(trensal) is easy axis type
 Both derivatives show field induced slow relaxation of the
- magnetization in a static magnetic field
- •The thermal activation barrier is not consistent with the energy differences obtained by luminescence data.
- •This observation invalidates the general assumption that the slow dynamics of the magnetization is associated in these systems to the magnetic anisotropy
- •Spectroscopic techniques are fundamental to understand the factors affecting the magnetization dynamics and relaxation mechanisms in these systems