Angle-resolved magnetometry for determination of magnetic anisotropy in low symmetry environments: a few additions to the presentation of Dr. ShangDa Jiang

Roberta Sessoli

Department of Chemistry and INSTM research unit, University of Florence

Techniques for the determination of the magnetic anisotropy

Anisotropy parameters

- •(HF-)EPR on powder
- Inelastic Neutron Scattering
- Magnetometry on powder
- Specific heat on powder

Anisotropy axes orientation

- •(HF-)EPR on single crystal
- •Torque Magnetometry

Angle resolved magnetometry

Angular resolved magnetometry: the rotator

An old technique revisited thanks to the automation & precision of horizontal sample rotator combined high sensitivity of modern SQUID magnetometers

Angular resolved magnetometry: the crystal

• 1st step: Accurate indexing of the faces

2nd step: Three rotations along orthogonal axes allow a full characterization of the magnetic anisotropy without *a priori* information

30 00 K · 134 00 E·-126 00

1 mil 1 mil 1 m 31 l/2k

Angular resolved magnetometry: the support

A teflon cube

The laboratory reference frame

By indexing with a single crystal X-ray diffractometer the faces of the amorphous cube on which the crystal is glued, the laboratory reference frame is defined in the crystal lattice frame

Angular resolved magnetometry: the support

© On-cube indexing of poorly defined or solvent loosing c7ystals

Procedures to avoid mistakes

The sign of each rotation has to be carefully checked

Suggested sequences of rotations

QD machines

	0 °	90 °	180°	270 °
Rot x	Z	У	-Z	-y
Rot y	Z	-X	-Z	X
Rot z	У	X	-y	-X

Choose a right reference frame for the cube and place the crystal on +z

Characterization of the magnetic anisotropy of $Dy(hfac)_3(NITR)_2$

Characterization of the magnetic anisotropy of Dy(hfac)₃(NITR)₂

or each rotation :

Experimental data are simulated assuming a simple tensorial relation

$$\vec{M} = \chi \cdot \vec{H}$$

and taking into account that only the component of M along H is measured

$$M(\theta) = H(\chi_{\alpha\alpha}\cos^2(\theta) + 2\chi_{\alpha\beta}\cos(\theta)\sin(\theta) + \chi_{\beta\beta}\sin^2(\theta))$$

Where α , β are the cyclic permutation of the reference frame axes

$$\chi = \begin{pmatrix} 4.7599 & 0.3578 & -5.8439 \\ 0.3578 & 0.7758 & 0.4681 \\ -5.8439 & 0.4681 & 9.2236 \end{pmatrix}$$

Characterization of the magnetic anisotropy of Dy(hfac)₃(NITR)₂

Diagonalization of the susceptibility matrix

$$\chi' = \mathbf{R}^{-1} \cdot \chi \cdot \mathbf{R}$$

Provides us with the principal values of the susceptibility:

	4.7599	0.3578	-5.8439
$\chi =$	0.3578	0.7758	0.4681
	-5.8439	0.4681	9.2236

 $\chi_x = 0.2 \pm 0.1 \text{ emu} \cdot \text{K} \cdot \text{mol}^{-1}$ $\chi_y = 1.3 \pm 0.1 \text{ emu} \cdot \text{K} \cdot \text{mol}^{-1}$

 $\chi_z = 13.2 \pm 0.2 \text{ emu} \cdot \text{K} \cdot \text{mol}^{-1}$

The eigenvector matrix R provides us with the <u>principal</u> <u>directions</u> of the magnetic anisotropy

Characterization of the magnetic anisotropy of Dy(hfac)₃(NITR)₂

Diagonalization of the susceptibility matrix

$$\chi' = \mathbf{R}^{-1} \cdot \chi \cdot \mathbf{R}$$

Provides us with the principal values of the susceptibility:

	(4.7599	0.3578	-5.8439
$\chi =$	0.3578	0.7758	0.4681
	-5.8439	0.4681	9.2236)

 $\chi_x = 0.2 \pm 0.1 \text{ emu} \cdot \text{K} \cdot \text{mol}^{-1}$ $\chi_y = 1.3 \pm 0.1 \text{ emu} \cdot \text{K} \cdot \text{mol}^{-1}$

 $\chi_z = 13.2 \pm 0.2 \text{ emu} \cdot \text{K} \cdot \text{mol}^{-1}$

The eigenvector matrix R provides us with the <u>principal</u> <u>directions</u> of the magnetic anisotropy The previous treatment to extract the susceptibility tensor assumes that it is of second rank and that the susceptibility does not depend on H

The last assumption is often not valid because of:

- saturation

- antiferromagnetic interactions overcome by the magnetic field

A more complex analysis, no more model-free, is necessary

A case study: a spin-canted Dy(III) Single Chain Magnet

- Magnetometry is NOT a LOCAL probe
- It averages over all the species in the crystal
- •Triclinic crystals have one magnetically independent site and are ideal candidates for this technique
- •In monoclinic system <u>b</u> is a principal axis
- •In orthorombic system <u>a</u>, <u>b</u>, and <u>c</u> are principal axes

A noon triclinic case: the Cp*ErCOT SMM

JACS dx

dx.doi.org/10.1021/ja200198v J. Am. Chem. Soc. 2011, 133, 4730-4733

COMMUNICATION

pubs.acs.org/JACS

An Organometallic Single-Ion Magnet

Shang-Da Jiang,[†] Bing-Wu Wang,^{*,†} Hao-Ling Sun,[‡] Zhe-Ming Wang,[†] and Song Gao^{*,†}

[†]Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China

^{*}College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China

Supporting Information

FULL PAPER

DOI: 10.1002/chem.201302600

Angular-Resolved Magnetometry Beyond Triclinic Crystals: Out-of-Equilibrium Studies of Cp*ErCOT Single-Molecule Magnet**

Marie-Emmanuelle Boulon,^[a] Giuseppe Cucinotta,^[a] Shan-Shan Liu,^[b] Shang-Da Jiang,^[b] Liviu Ungur,^[c] Liviu F. Chibotaru,^[c] Song Gao,^[b] and Roberta Sessoli^{*[a]}

The Cp*ErCOT case: an orthorombic crystal

Orthorhombic system: 2 orientations

Along b-axis view

Mirror planes // to (ac) plane

Molecules lie on mirror planes 18 Angle between molecular pseudo-axis ~ 95°

Difficult manipulation of the crystal in the glovebox:

<u>Rotation 1</u> along $\omega_1 = 0.614004a - 0.340304b + 0.712175c$

Difficult manipulation of the crystal in the glovebox:

<u>Rotation</u> 2: along ω_2 = 0.317728*a* + 0.931653*b* + 0.176271*c*

Simulation with two Ising contributions

Rotation 2: along ω_2 = 0.317728*a* + 0.931653*b* + 0.176271*c*

This interpretation is not unique: how to verify it? ²¹

Temperature dependence of the angular resolved magnetization shows additional peaks at low temperature

Rotation 2: along $\omega_2 = 0.317728a + 0.931653b + 0.176271c$

Out of equilibrium measurements

At T=4 K the butterfly hysteresis of this SMM is open and data are taken at different rotation rate of the field. For long waiting time the sinusoidal behavior is restored

Out of equilibrium measurements

Simulation of out of equilibrium M

$$M(\theta, i) = M_{eq}(\theta, i) + \Delta M_i e^{-\frac{\sigma_i}{\tau_j(H)}}$$

H is constant but θ changes, thus M_{eq} changes with θ σ is the time elapsed between rotation and measurement

Best simulation obtained for: $\tau = \tau_0 + A H |\cos(\theta)|$

With τ_0 =105(5)s, A=0.210 s Oe⁻¹ increasing fields A=0.140 s Oe⁻¹ decreasing fields 24

Comparison with ab-initio estimation

