

Nanoscale superconductivity, fluxonics and photonics K.U.Leuven Methusalem Group

Magnetic anisotropy in complexes and its *ab initio* description

Liviu F. Chibotaru and Liviu Ungur

Theory of Nanomaterials Group, Department of Chemistry, Katholieke Universiteit Leuven

Outline:

- Basic notions of atomic magnetism
- What is the magnetic anisotropy?
- When does it appear?
- How does it manifest in magnetic properties?
- Zeeman and ZFS interaction for weak s-o coupling: *spin* magnetic Hamiltonians
- ---- # ---- for intermediate/strong s-o coupling: *pseudospin* magnetic Hamiltonians
- Exchange interaction for weak s-o coupling: spin exchange Hamiltonians
- ---- # ---- for intermediate/strong s-o coupling: *pseudospin* exchange Hamiltonians
- The Lines' model
- The sign of the g tensor
- Ab initio calculations of electronic coupling of complexes
- Calculation methodology of anisotropic magnetic properties
- SINGLE_ANISO module for mononuclear complexes and fragments. Examples of applications.
- *POLY_ANISO* package for polynuclear complexes. Examples of applications.

Classical magnetic and angular momenta

1) Currents induce magnetic field

Biot and Savart low:

$$d\mathbf{B} = I \frac{d\mathbf{l} \times \mathbf{x}}{\left|\mathbf{x}\right|^{3}}$$

2) In finite systems \rightarrow *loops* of currents:

$$\boldsymbol{\mu} = \frac{I}{2c} \oint \mathbf{x} \times d\mathbf{l} = \frac{I}{c} S \mathbf{e}_z$$

magnetic moment

3) In atom \rightarrow one electron in the Bohr's orbit:

$$I = e \frac{v}{2\pi r} \rightarrow \mu_z = \frac{e}{2mc} (r \cdot mv) = -\mu_B L_z$$

$$\mu = -\mu_B \mathbf{L} \qquad \mathbf{L} = \mathbf{r} \times \mathbf{p} \qquad \mu_B = \frac{|e|}{2mc}$$

orbital angular moment Bohr magneton

3

In quantum mechanics (one electron):

$$\hat{\boldsymbol{\mu}}_o = -\boldsymbol{\mu}_{\rm B} \hat{\mathbf{l}}, \qquad \hat{\mathbf{l}} - \text{in units of } \hbar \rightarrow \boldsymbol{\mu}_{\rm B} = \frac{\hbar |\boldsymbol{e}|}{2mc}$$

For each electron: *internal* angular momentum \hat{s} (spin):

$$\hat{\boldsymbol{\mu}}_s = -\boldsymbol{g}_s \boldsymbol{\mu}_{\rm B} \hat{\boldsymbol{s}} \quad \boldsymbol{g}_s = 2.0023$$

Total magnetic moment:

$$\hat{\boldsymbol{\mu}} = \hat{\boldsymbol{\mu}}_o + \hat{\boldsymbol{\mu}}_s = -\left(\hat{\mathbf{l}} + 2\hat{\mathbf{s}}\right)\boldsymbol{\mu}_{\rm B}$$

Eigenstates (quantization) of angular momenta:

$$\hat{\mathbf{l}}_{z} |lm\rangle = m|lm\rangle \quad \hat{\mathbf{l}}^{2} |lm\rangle = l(l+1)|lm\rangle, \quad \hat{\mathbf{l}}^{2} = \hat{\mathbf{l}}_{x}^{2} + \hat{\mathbf{l}}_{y}^{2} + \hat{\mathbf{l}}_{z}^{2}$$

$$l = 0, 1, 2, \cdots \qquad m = -l, -l+1, \cdots, l \quad \rightarrow \quad 2l+1 \text{ definite projections}$$

$$\hat{\mathbf{s}}_{z} |sm_{s}\rangle = m_{s} |sm_{s}\rangle \quad \hat{\mathbf{s}}^{2} |sm_{s}\rangle = s(s+1)|sm_{s}\rangle, \quad \hat{\mathbf{s}}^{2} = \hat{\mathbf{s}}_{x}^{2} + \hat{\mathbf{s}}_{y}^{2} + \hat{\mathbf{s}}_{z}^{2}$$

$$s = \frac{1}{2} \qquad m_{s} = -\frac{1}{2}, \frac{1}{2}$$

HOLIEKE UNIVERS

Conservation of angular momenta in atoms

A physical quantity *A* is conserved if $\begin{bmatrix} \hat{A}, \hat{H} \end{bmatrix} = 0$

One-electron atom (H)

$$\hat{H} = -\frac{\hbar^2}{2m}\Delta - \frac{Ze^2}{r} \qquad \Delta = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{\hat{\mathbf{l}}^2}{r^2} , \qquad \hat{\mathbf{l}}^2, \hat{l}_{\alpha} = f(\theta, \phi)$$

$$\Rightarrow \quad \left[\hat{\mathbf{l}}, \hat{H}\right] = \left[\hat{\mathbf{s}}, \hat{H}\right] = 0 \qquad \Rightarrow \quad \mathbf{l}, \mathbf{s} \text{ are conserved}$$

$$\hat{H}\varphi_{nlm} = \varepsilon_{nl}\varphi_{nlm} \qquad \varphi_{nlm} = R_{nl}(r)Y_{lm}(\theta, \phi) \qquad \psi_{nlmm_s} = \varphi_{nlm}(r, \theta, \phi)\chi_{m_s}(\sigma)$$

Many-electron atom:

$$\hat{H} = \sum_{i=1}^{N_{el}} \left(-\frac{\hbar^2}{2m} \Delta_i - \frac{Ze^2}{r_i} \right) + \frac{1}{2} \sum_{i=1}^{N_{el}} \sum_{\substack{j=1\\(j\neq i)}}^{N_{el}} \frac{e^2}{\left|\mathbf{r}_i - \mathbf{r}_j\right|}$$

LEUVEN 5

1) Independent electrons in the central field:

$$\hat{H}_{0} = \sum_{i=1}^{n} \hat{H}_{i}, \qquad \hat{H}_{i} = -\frac{\hbar^{2}}{2m} \Delta_{i} - \frac{Ze^{2}}{r_{i}} + V(r_{i}),$$

$$V(r_{i}) \text{ - average electrostatic field from all electrons}$$

$$\begin{bmatrix} \hat{\mathbf{l}}_{i}, \hat{H}_{0} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{s}}_{i}, \hat{H}_{0} \end{bmatrix} = 0 \implies \mathbf{l}_{i}, \mathbf{s}_{i} \text{ are conserved}$$

nl configuration

6

2) Permutational symmetry of electrons:

Antisymmetrized w. f. are characterized by a *definite* total spin S \Rightarrow only the total spin $\mathbf{S} = \mathbf{s}_1 + \mathbf{s}_2 + \cdots + \mathbf{s}_n$ is conserved

3) Interacting electrons:

$$V_{\text{int}} = \frac{1}{2} \sum_{i \neq j}^{n} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i}^{n} V(r_i) \qquad \left[\hat{\mathbf{l}}_i, \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right] \neq 0, \qquad \left[\hat{\mathbf{l}}_i + \hat{\mathbf{l}}_j, \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right] = 0$$

$$\Rightarrow \quad \text{only the total orbital moment } \mathbf{L} = \mathbf{l}_1 + \mathbf{l}_2 + \dots + \mathbf{l}_n \text{ is conserved}$$

 \Rightarrow Solutions of SE are *terms* \rightarrow definite *L* and *S*

4) Spin-orbit interaction

The interaction of electron spins with magnetic fields of their orbital motions:

$$\hat{V}_{sl} = \sum_{i} \xi(r_i) \hat{\mathbf{l}}_i \cdot \hat{\mathbf{s}}_i, \qquad \xi(r_i) = \frac{\hbar^2}{2m^2 c^2 r_i} \frac{\mathrm{d}U(r_i)}{\mathrm{d}r_i}, \qquad U(r_i) = -\frac{Ze^2}{r_i} + V(r_i)$$

Within a given electronic configuration

$$\hat{V}_{sl} = \sum_{i} \zeta \hat{\mathbf{l}}_{i} \cdot \hat{\mathbf{s}}_{i}, \qquad \zeta_{nl} = \int R_{nl}(r)^{2} \xi(r) r^{2} \mathrm{d}r, \qquad \zeta \sim Z^{4}$$

Within a given atomic term LS:

One should calculate
$$\left\langle \Psi_{LM_{L}SM_{S}} \left| \hat{V}_{sl} \right| \Psi_{LM_{L}'SM_{S}'} \right\rangle$$

Hund's rule for the GS atomic term:

maximal *S* within a given configuration
 maximal *L* possible for this *S*

$$\Rightarrow$$
 For $n \leq$ half-filled shell $\rightarrow S = \frac{n}{2}$

 $\Rightarrow \Psi_{LM_{1}SM_{s}}$ are symmetric with respect to spin coordinates of all *n* electrons

 \Rightarrow The matrix elements of $\hat{\mathbf{s}}_i$ are the same for all i = 1, ... n

Since
$$\mathbf{S} = \mathbf{s}_1 + \mathbf{s}_2 + \cdots + \mathbf{s}_n \rightarrow \text{m.e.} \{\mathbf{s}_i\} = \text{m.e.} \{\frac{\mathbf{S}}{n}\}$$

$$\Rightarrow \hat{V}_{sl} = \sum_{i} \zeta \hat{\mathbf{l}}_{i} \cdot \hat{\mathbf{s}}_{i} = \frac{\zeta}{n} \hat{\mathbf{S}} \cdot \sum_{i} \hat{\mathbf{l}}_{i} = \frac{\zeta}{n} \hat{\mathbf{S}} \cdot \hat{\mathbf{L}} = \lambda \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}$$

Total angular momentum: $\hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}$, $\begin{bmatrix} \hat{\mathbf{J}}, \hat{V}_{sl} \end{bmatrix} = 0 \rightarrow \hat{\mathbf{J}}$ is conserved Multiplets - eigenstates of $\hat{\mathbf{J}}^2, \hat{\mathbf{J}}_z$: $\Psi_{JM_J}, M_J = -J, -J+1, \cdots, J$

$$\lambda \hat{\mathbf{L}} \cdot \hat{\mathbf{S}} = \frac{\lambda}{2} \left[\left(\hat{\mathbf{L}} + \hat{\mathbf{S}} \right)^2 - \hat{\mathbf{L}}^2 - \hat{\mathbf{S}}^2 \right] = \frac{\lambda}{2} \left[\hat{\mathbf{J}}^2 - \hat{\mathbf{L}}^2 - \hat{\mathbf{S}}^2 \right]$$
$$E_J = \frac{\lambda}{2} \left[J(J+1) - L(L+1) - S(S+1) \right], \quad \Delta E_{J,J-1} = \lambda J - \text{Lande rule}$$

$$n \leq \text{h.f.}: \quad \lambda > 0 \rightarrow J_{\text{GS}} = |L - S| - \text{normal multiplet structure}$$

 $n > \text{h.f.}: \quad \hat{V}_{sl} = -\zeta \sum_{i} \hat{\mathbf{l}}_{i} \cdot \hat{\mathbf{s}}_{i} \rightarrow \lambda < 0 \rightarrow J_{\text{GS}} = |L + S| - \text{inverted m.s.}$

8

Hierarchy of interactions in atoms

KATHOLIEKE UNIVERSITEIT

Example: Nd³⁺

KATHOLIEKE UNIVERSITEIT

Zeeman interaction

In applied homogeneous \mathbf{H} : $\hat{V}_{\text{Zee}} = -\mathbf{\mu} \cdot \mathbf{H} = \mu_{\text{B}} \left(\hat{\mathbf{L}} + 2\hat{\mathbf{S}} \right) \cdot \mathbf{H}$

Spherical symmetry of atoms \rightarrow rotational symmetry around **H**

Each multiplet J splits into $(2J+1) M_J$ -components || **H**:

$$E_{JM_{J}} = E_{J} + \mu_{B} \langle JM_{J} | \hat{\mathbf{L}} + 2\hat{\mathbf{S}} | JM_{J} \rangle \mathbf{H} = E_{J} + \mu_{B} \langle JM_{J} | \hat{J}_{z} + \hat{S}_{z} | JM_{J} \rangle H$$
$$= E_{J} + \mu_{B} \left(M_{J} + \langle \hat{S}_{z} \rangle_{M_{J}} \right) H$$

Since J_z is the only conserving momentum $\rightarrow \langle S \rangle || \langle J \rangle \rightarrow \langle S \rangle_{M_J} = \text{const} \cdot M_J$ One can prove: $\langle J \cdot S \rangle = \text{const} \cdot \langle J^2 \rangle \rightarrow \text{const} = \langle J \cdot S \rangle / J (J+1)$ But $J \cdot S = \frac{1}{2} \Big[J^2 + S^2 - (J - S)^2 \Big] = \frac{1}{2} \Big(J^2 + S^2 - L^2 \Big) = \frac{1}{2} \Big[J (J+1) + S (S+1) - L (L+1) \Big]$ $\Rightarrow E_{JM_J} = E_J + \mu_B g M_J H, \quad M_J = -J, -J+1, \cdots, J$ - Zeeman splitting

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$
 - Lande (gyromagnetic) factor

Isotropy of space = degeneracy of $|JM\rangle$ after M $(M = -J, -J + 1, \dots, J)$

Basic property of eigenfunctions of angular momentum $|JM\rangle$: they have the same form w.r.t. all quantization axes:

Eigenfunctions of \hat{J}_{z} : $|JM\rangle$ Eigenfunctions of $\hat{J}_{z'}$: $|JM\rangle'$

$$|JM\rangle' = \sum_{M'=-J}^{J} D_{MM'}(\alpha\beta\gamma)|JM'\rangle$$

where $\alpha\beta\gamma$ - Euler angles of x'y'z' relative to xyz

The same property also for ${\bf S}$ and ${\bf L}$

 \Rightarrow Magnetic properties of consverved angular momenta are isotropic

Origin of magnetic anisotropy: removal of degeneracy after *M*

Atoms in a given multiplet state *J* are magnetically *isotropic*: the Zeeman splitting is the same for *all directions* of the applied **H**

This is the consequence of the (2J+1) degeneracy of multiplets

Example: a d^2 configuration (l=2, L=3, S=1, J=2) in electric field (**E** || *z*) splits into nondegenerate $|2,0\rangle$ and two degenerate $|2,\pm1\rangle$ and $|2,\pm2\rangle$ levels. In applied magnetic field: $\hat{V}_{\text{Zeeman}} = -\hat{\mu}_{at} \cdot \mathbf{H} = \mu_B g_J \hat{\mathbf{J}} \cdot \mathbf{H}$ For the ground doublet $|2,\pm2\rangle$: $\hat{V}_{\text{Zeeman}} = \begin{pmatrix} 2\mu_B g_J H_z & 0\\ 0 & -2\mu_B g_J H_z \end{pmatrix}$ GS orbital magnetic moment $\langle \hat{\mu}_{at} \rangle = -\mu_B g_J \langle \hat{\mathbf{J}} \rangle = -\mu_B g_J \langle \hat{\mathbf{J}}_z \rangle = \begin{cases} -2\mu_B g_J, H_z > 0\\ 0, H_z = 0\\ 2\mu_B g_J, H_z < 0 \end{cases}$

Zeeman splitting: $\Delta E_{\text{Zee}} = 4\mu_{\text{B}}g_{J}H_{z} = 4\mu_{\text{B}}g_{J}H\cos\theta \implies anisotropic$

Magnetic anisotropy in mononuclear complexes

<u>Spin-orbit coupling</u> on metal ions leads to the following effects:

1. All spin levels corresponding to S>1/2 become split into:

- Kramers doublets for half-integer spin
- non-degenerate levels for integer spin

 $\hat{\mathbf{H}}_{\text{ZFS}} = \sum_{\alpha,\beta} S_{\alpha} D_{\alpha\beta} S_{\beta}$ **D** - tensor of zero field splitting

2. The Zeeman interaction becomes anisotropic, the gyromagnetic factor becomes a tensor:

 $g \rightarrow g_{\alpha\beta}$

3. The magnetization becomes anisotropic, the susceptibility function becomes a tensor:

$$\chi(T,H) \rightarrow \chi_{\alpha\beta}(T,H), \qquad M_{\alpha} = \sum_{\beta} \chi_{\alpha\beta} H_{\beta}$$

Weak spin-orbit coupling effects

 $\zeta / \Delta E_{CF} \sim 0.01 - 0.1$

• Most of transition-metal ions - Cr³⁺, Mn²⁺, Fe³⁺, Ni²⁺

Magnetic centers have a spin-only ground state

- Magnetic moment has a spin origin
- The spin of the magnetic centers is a good quantum number

ZFS tensor is small $\mathbf{D} \sim \zeta^2 / \Delta E_{CF}$

Perturbational treatment of spin-orbit coupling for ${}^{2S+1}\Gamma_0$

Effective Zeeman Hamiltonian:

$$\hat{\mathbf{H}}_{\text{Zeeman}} = \sum_{\alpha\beta} S_{\alpha} g_{\alpha\beta} H_{\beta}$$

Gyromagnetic tensor: $\mathbf{g} = g_e \mathbf{1} + \lambda \mathbf{\Lambda}$

Zero-field-splitting tensor: $\mathbf{D} = \lambda^2 \Lambda$

where

$$\Lambda_{\alpha\beta} = \sum_{i} \frac{\left\langle \Gamma_{0} \left| \hat{\mathbf{L}}_{\alpha} \left| \Gamma_{i} \right\rangle \left\langle \Gamma_{i} \left| \hat{\mathbf{L}}_{\beta} \left| \Gamma_{0} \right\rangle \right. \right. \right.}{E_{0} - E_{i}}$$

 $\hat{L}_{\alpha}, \ \hat{L}_{\beta}$ - Cartesian components of the total orbital momentum

Strong spin-orbit coupling effects

(quasi-) degenerate magnetic centers

= unquenched orbital moments

 $\Delta E_{CF} \sim \zeta$

- f ions lanthanides and actinides Ce³⁺, Nd³⁺, Dy³⁺, Yb³⁺, U⁴⁺ et al.
- Some d ions and complexes Co²⁺, [Mo^{III}(CN)₇]⁴⁻, [Fe(CN)₆]³⁻.
- The total spin on magnetic centers is no longer a good quantum number

ZFS tensor is large

 \Rightarrow Pseudospin description

There are orbital states close to the ground one within the spinorbit energy range

Non-perturbational treatment of spin-orbit coupling effects

- 1) Spin-orbit interactions are included in quantum chemistry calculations
 - \Rightarrow exact treatment of zero field splitting of all molecular terms

2) All paramagnetic properties are expressed through *matrix elements* of magnetic moments operators:

$$\hat{\mathbf{H}}_{\text{Zeeman}} = -\hat{\boldsymbol{\mu}} \cdot \mathbf{H}, \qquad \hat{\boldsymbol{\mu}} = -\mu_{\text{B}} \sum_{i=1}^{N_{el}} \left(g_{e} \hat{\mathbf{s}}_{i} + \hat{\mathbf{l}}_{i} \right)$$

on calculated (exact) wave functions of spin-orbit-coupling multiplets

Exact derivation of pseudospin Hamiltonians \hat{H}_{zee} and \hat{H}_{zee}

1) Choice of the relevant manifold:

ab initio wave functions $\Psi_1, \Psi_2, \dots \Psi_N \rightarrow 2\tilde{S} + 1 = N$

2) Definition of pseudospin (in a given coordinate system):

$$\Psi'_{i} = \sum_{n=1}^{N} c_{in} \Psi_{n} \rightarrow \left| \tilde{S}M \right\rangle \qquad \tilde{S}_{z} \left| \tilde{S}M \right\rangle = M \left| \tilde{S}M \right\rangle$$

3) Decomposition of $\left\|\left\langle \Psi'_{i} | \hat{\mu}_{\alpha} | \Psi'_{j} \right\rangle \right\|$ and $H_{ZFS} = \left\| \sum_{n=1}^{N} c_{in}^{*} c_{jn} E_{n} \right\|$ in pseudospin matrices $\tilde{S}_{\alpha}, \tilde{S}_{\alpha} \tilde{S}_{\beta}, \cdots, \alpha, \beta = x, y, z$

Zeeman and ZFS tensors for various pseudospins

$$\hat{\mathbf{H}}_{\text{Zee}} = -\mathbf{\mu} \cdot \mathbf{H}$$
$$\mathbf{\mu} = \mathbf{\mu}^{1} + \mathbf{\mu}^{3} + \mathbf{\mu}^{5} + \dots$$

Individual tensor components:

$$\hat{\mu}^1_{lpha} = \sum_{eta} g_{lphaeta} \hat{ ilde{S}}_{eta}, \qquad g_{lphaeta} = g_{etalpha},$$

$$\hat{\mu}^n_{lpha} = \sum_{m=0}^n \Bigl(b^{lpha}_{nm} \hat{O}^m_n + c^{lpha}_{nm} \hat{\Omega}^m_n \Bigr)$$

$$\hat{\mathrm{H}}_{\mathrm{ZFS}}^2 = \sum_{eta} \hat{\widetilde{S}}_{lpha} D_{lphaeta} \hat{\widetilde{S}}_{eta}, \qquad D_{lphaeta} = D_{eta lpha},$$

$$\hat{\mathbf{H}}_{\mathrm{ZFS}}^{n} = \sum_{m=0}^{n} \left(e_{nm}^{\alpha} \hat{O}_{n}^{m} + f_{nm}^{\alpha} \hat{\Omega}_{n}^{m} \right)$$

$$\begin{array}{ccccccc} S & \mu & H_{ZFS} \\ 1/2 & \mu^1 & H^0 \\ 1 & \mu^1 & H^2 \\ 3/2 & \mu^1 + \mu^3 & H^2 \\ 2 & \mu^1 + \mu^3 & H^2 + H^4 \\ 5/2 & \mu^1 + \mu^3 + \mu^5 & H^2 + H^4 \\ 3 & \mu^1 + \mu^3 + \mu^5 & H^2 + H^4 + H^6 \\ 7/2 & \mu^1 + \mu^3 + \mu^5 + \mu^7 & H^2 + H^4 + H^6 \\ 4 & \mu^1 + \mu^3 + \mu^5 + \mu^7 & H^2 + H^4 + H^6 + H^8 \end{array}$$

KATHOLIEKE UNIVERSITEIT

$$\hat{O}_{n}^{m} = \frac{1}{2} \left(\hat{O}_{n}^{+m} + \hat{O}_{n}^{-m} \right), \quad \hat{\Omega}_{n}^{m} = \frac{1}{2i} \left(\hat{O}_{n}^{+m} - \hat{O}_{n}^{-m} \right) - \text{Stewens operators}$$
$$\hat{O}_{n}^{\pm m} \left(\tilde{\mathbf{S}} \right) \sim Y_{n\pm m} \left(\tilde{\mathbf{S}} \right) - \text{spherical functions of } \tilde{S}_{x}, \tilde{S}_{y}, \tilde{S}_{z}$$

Calculation of the parameters of pseudospin Hamiltonians

$$\begin{split} \left\langle \tilde{S}M \left| \hat{O}_{n}^{\pm m} \right| \tilde{S}M' \right\rangle &= \frac{O_{n}^{0} \left(\tilde{S} \right)}{\sqrt{2\tilde{S} + 1}} \frac{\sqrt{(2\tilde{S} - n)!(2\tilde{S} + n + 1)!}}{(2\tilde{S})!} C_{\tilde{S}M'n\pm m}^{\tilde{S}M} \\ b_{nm}^{\alpha} &= \frac{\left(2n + 1 \right) \operatorname{Sp} \left(\hat{\mu}_{\alpha} \hat{O}_{n}^{m} \right)}{\left\langle \tilde{S} \left\| O_{n} \right\| \tilde{S} \right\rangle^{2}} \quad c_{nm}^{\alpha} &= \frac{\left(2n + 1 \right) \operatorname{Sp} \left(\hat{\mu}_{\alpha} \hat{\Omega}_{n}^{m} \right)}{\left\langle \tilde{S} \left\| O_{n} \right\| \tilde{S} \right\rangle^{2}} \\ e_{nm} &= \frac{\left(2n + 1 \right) \operatorname{Sp} \left(\hat{H}_{ZFS} \hat{O}_{n}^{m} \right)}{\left\langle \tilde{S} \left\| O_{n} \right\| \tilde{S} \right\rangle^{2}} \quad f_{nm} &= \frac{\left(2n + 1 \right) \operatorname{Sp} \left(\hat{H}_{ZFS} \hat{\Omega}_{n}^{m} \right)}{\left\langle \tilde{S} \left\| O_{n} \right\| \tilde{S} \right\rangle^{2}} \end{split}$$

Definition of pseudospin for arbitrary \tilde{S} : method of **A** tensor

 $A_{\alpha\beta} = \frac{1}{2} \operatorname{Sp} \{ \mu_{\alpha} \mu_{\beta} \}, \quad \mu_{\alpha} - N \times N \text{ matrix of } \hat{\mu}_{\alpha} \text{ in arbitrary basis}$

Diagonalization:

$$\mathbf{R}_{r}^{\text{main}} \mathbf{A} \left(\mathbf{R}_{r}^{\text{main}} \right)^{-1} = \tilde{\mathbf{A}}_{\text{diag}} \equiv \left\{ \tilde{A}_{XX}, \tilde{A}_{YY}, \tilde{A}_{ZZ} \right\}$$

Main values of the *g* tensor $\left(N = 2\tilde{S} + 1 \right)$:

$$g_i = \frac{6}{\mu_{\rm B}\tilde{S}\left(\tilde{S}+1\right)\left(2\tilde{S}+1\right)}\sqrt{\tilde{A}_{ii}}, \quad i = X, Y, Z$$

Pseudospin eigenfunctions:

$$\tilde{S}_{Z} \left| \tilde{S}M \right\rangle = M \left| \tilde{S}M \right\rangle \rightarrow diagonalization of \mu_{Z}$$

Application: $\mu^{1} \gg \mu^{3}, \mu^{5}, \cdots$

Exchange interaction in polynuclear complexes

1) No spin-orbit coupling

Isotropic spin Hamiltonian: $H_{exch} = -J\hat{S}_1 \cdot \hat{S}_2$

2) Weak spin-orbit coupling effects

Anisotropic spin Hamiltonian: $\hat{H}_{exch} = -J\hat{S}_1 \cdot \hat{S}_2 + \mathbf{d} \cdot \hat{S}_1 \times \hat{S}_2 + \hat{S}_1 \cdot \mathbf{J}_{symm} \cdot \hat{S}_2$

$$\mathbf{d} \sim J \frac{\lambda}{\Delta E_{CF}}, \quad \mathbf{J} \sim J \left(\frac{\lambda}{\Delta E_{CF}}\right)^2$$

3) Strong spin-orbit coupling effects

Anisotropic pseudospin Hamiltonian: $\hat{H}_{exch} = \tilde{S}_1 \cdot J \cdot \tilde{S}_2 + higher order$

terms

Pseudospin exchange Hamiltonians: $U^{4+} - U^{4+}$

KATHOLIEKE UNIVERSITEIT

 $H = H_{ZFS} + H_{exch}^{(1)} + H_{exch}^{(2)} + H_{exch}^{(3)}$

$$\begin{split} H_{\rm ZFS} &= D \bigg[\left(\tilde{S}_A^z \right)^2 + \left(\tilde{S}_B^z \right)^2 \bigg] + E \bigg[\left(\tilde{S}_A^x \right)^2 - \left(\tilde{S}_A^y \right)^2 + \left(\tilde{S}_B^x \right)^2 - \left(\tilde{S}_B^y \right)^2 \bigg] \\ D &= -4.6 \ {\rm cm}^{-1} \quad E = 5.2 \ {\rm cm}^{-1} \\ H_{\rm exch}^{(1)} &= J_x \tilde{S}_A^x \tilde{S}_B^x + J_y \tilde{S}_A^y \tilde{S}_B^y + J_z \tilde{S}_A^z \tilde{S}_B^z \\ J_x &= 14.6 \ {\rm cm}^{-1}, \quad J_x = 22.1 \ {\rm cm}^{-1}, \quad J_z = 18.8 \ {\rm cm}^{-1} \\ H_{\rm exch}^{(2)} &= j_1 \tilde{S}_A^x \tilde{S}_B^x \bigg[\left(\tilde{S}_A^z \right)^2 + \left(\tilde{S}_B^z \right)^2 \bigg] + j_2 \tilde{S}_A^y \tilde{S}_B^y \bigg[\left(\tilde{S}_A^z \right)^2 + \left(\tilde{S}_B^z \right)^2 \bigg] + j_3 \tilde{S}_A^x \tilde{S}_B^x \left(\tilde{S}_A^z \tilde{S}_B^z \right) + j_4 \tilde{S}_A^y \tilde{S}_B^y \left(\tilde{S}_A^z \tilde{S}_B^z \right) \\ j_1 &= -0.3 \ {\rm cm}^{-1}, \quad j_2 = 0.4 \ {\rm cm}^{-1}, \quad j_3 = 0.8 \ {\rm cm}^{-1}, \quad j_4 = -0.6 \ {\rm cm}^{-1} \\ H_{\rm exch}^{(3)} &= q_1 O_A^{(1)} O_B^{(1)} + q_2 O_A^{(2)} O_B^{(2)} + q_3 O_A^{(3)} O_B^{(3)} + q_4 \bigg[O_A^{(1)} O_B^{(2)} + O_A^{(1)} O_B^{(2)} \bigg] \\ q_1 &= 1.8 \ {\rm cm}^{-1}, \quad q_2 = 2.6 \ {\rm cm}^{-1}, \quad q_3 = 0.6 \ {\rm cm}^{-1}, \quad q_4 = -0.2 \ {\rm cm}^{-1} \\ O_k^{(1)} &= \left(\tilde{S}_k^z \right)^2 - \tilde{S} \left(\tilde{S} + 1 \right) / 3 \\ O_k^{(2)} &= \left(\tilde{S}_k^x \right)^2 - \left(\tilde{S}_k^y \right)^2 \\ V.S. \ Mironov, L.F. \ Chibotaru, A. \ Ceulemans \\ Adv. \ Quant. \ Chem. \ 44, \ 600-616 \ (2003) \end{split}$$

KATHOLIEKE UNIVERSITEIT

EUV

<u>Practical approach</u>: combined exactphenomenological treatment of anisotropic exchange in polynuclear complexes

- exact quantum chemical treatment of individual metal fragments
- Lines model treatment of exchange interactions:

1) introduce an effective $\hat{H}_{exch} = -\sum_{ij} J_{ij} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$

2) diagonalize \hat{H}_{exch} in the basis of lowest SO multiplets on sites: $\{\Gamma_i\} \otimes \{\Gamma_j\}$ (J_{ij} - fitting parameters)

Advantages:

- contains one single Lines parameter for each exchange-coupled pair
- becomes exact in the limit of isotropic and strongly anizotropic (Ising) interactions

Polynuclear Ln complexes - weak exchange limit

CF splitting of multiplets on Ln ions >> exchange splitting

 \Rightarrow Non-collinear magnetic structure

Example : a Dy_3 complex

Anisotropic exchange interactions for axial ions

(For two isotropic ions:
$$\hat{H}_{ex} = -J\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 = -J(\hat{S}_{1x}\hat{S}_{2x} + \hat{S}_{1y}\hat{S}_{2y} + \hat{S}_{1z}\hat{S}_{2z})$$
)

Ln - Ln:

 \tilde{s}_{1z_1}

 \tilde{s} – axial S – isotrop

S – isotropic

 \tilde{s}_{2z_2}

Negative *g* factors in complexes with strong spin-orbit coupling effects

$$\hat{\boldsymbol{\mu}} = -g_{L}\mu_{B}\hat{\mathbf{L}}, \quad g_{L} = 1$$

$$\hat{\boldsymbol{\mu}} = -g_{s}\mu_{B}\hat{\mathbf{S}}, \quad g_{s} = 2.0023$$

$$\hat{\boldsymbol{\mu}} = -g_{J}\mu_{B}\hat{\mathbf{J}}, \quad g_{J} = \frac{g_{s}+1}{2} + (g_{s}-1)\frac{S(S+1) - L(L+1)}{2J(J+1)} > 0$$

g>0 for conserved angular momenta

Sign[g] not evident for pseudospins

 $\tilde{S} = 1/2 \rightarrow \text{e.g.} (\Phi, \overline{\Phi})$ of a KD (crystal-field splitting of an atomic *J*)

Without symmetry \rightarrow no unique way $\begin{pmatrix} \Phi \\ \overline{\Phi} \end{pmatrix} \Leftrightarrow \begin{pmatrix} |\tilde{S} \ 1/2 \rangle \\ |\tilde{S} \ -1/2 \rangle \end{pmatrix}$ $\mu_{\alpha} = -\mu_{\rm B} \sum_{\alpha} g_{\alpha\beta} \tilde{S}_{\beta} , \quad \tilde{S}_{\beta} = \frac{1}{2} \sigma_{\beta} , \quad \alpha, \beta = x, y, z$

Dynamics of the magnetic moment in external H

$$\hat{\mathbf{H}}_{\mathrm{Zee}} = -\boldsymbol{\mu} \cdot \mathbf{H}$$

Diagonalization of **g**:

$$\begin{array}{ccc}
x, y, z \to X, Y, Z \\
\|g_{\alpha\beta}\| \to g_X, g_Y, g_Z \implies \hat{H}_{\text{Zee}} = \mu_{\text{B}} \sum_{i=X,Y,Z} g_i \tilde{S}_i H_i
\end{array}$$

Equation of motion (M.H.L. Pryce, 1959) :

$$i\hbar\frac{d\hat{\mu}_{X}}{dt} = \left[\hat{\mu}_{X}, \hat{H}_{\text{Zee}}\right] = i\mu_{\text{B}}g_{X}g_{Y}g_{Z}\left(\frac{1}{g_{Z}^{2}}\hat{\mu}_{Z}H_{Y} - \frac{1}{g_{Y}^{2}}\hat{\mu}_{Y}H_{Z}\right)$$

 \Rightarrow The direction of precession depends on Sign $[g_X g_Y g_Z]$

 $g_X g_Y g_Z < 0$ was found in:

 NpF_6 with circularly polarized light (1967)

 UF_6^- with circularly polarized EPR (1967)

Ab initio calculation of $Sign[g_X g_Y g_Z]$

L. Chibotaru, A. Ceulemans, H. Bolvin, Phys. Rev. Lett. 2008

Signs of individual g_i – unique definition of g tensors

L.Chibotaru, A. Ceulemans, H. Bolvin, Phys. Rev. Lett. 2008

- use of symmetry: $\left| \tilde{S}M \right\rangle \Leftrightarrow \left| \Gamma \gamma \right\rangle$
- principle of adiabatic connection

Example: Tetragonally distorted PaCl₆²⁻

Ab initio calculation of magnetic properties of mononuclear complexes

What is an *ab initio* calculation?

Solves the Schrödinger Eq.: $\hat{H}\Psi = E\Psi$

 \hat{H} -- includes all possible interactions between the particles (electrons, nuclei) Ψ -- contains all information about the electronic state of the system

- Uses ONLY the atomic coordinates as input
- Does NOT employ any experimental data / parameters / information

What is an ab initio calculation?

Exact solution \rightarrow *impossible*. Approximations are needed...

 Ψ -- single-determinant:

- Hartree-Fock (HF or SCF) -- Ψ is represented by one configuration;
- improvements: SCF + PT; SCF + CI; SCF + Coupled Clusters ... etc;
 Suitable for closed-shell systems! NOT applicable for open-shell systems!

 Ψ -- many-determinants:

- Multiconfigurational Hartree-Fock (MCSCF)
- CASSCF is one of the existing multiconfigurational approaches;
- improvements: CASPT2; NEVPT2, DDCI

Suitable for open-shell systems! Computationally more difficult than HF!

Spin-orbit coupling is described by the DKH Hamiltonian in the AMFI approach, using CASSCF/CASPT2 states as input.

DFT ≠ is NOT ab initio, because the Exchange-Correlation Functional employed by DFT is fitted to a list of experimental data;
Relativistic ab initio computational methodology in MOLCAS

MOLCAS (www.molcas.org) - basic ab initio program package

- Get the atomic coordinates from the crystal structure file (CIF)
- Define the basis sets for all atoms: which already include scalar relativistic effects (ANO-RCC; ANO-DK3)
- Perform state average CASSCF calculation of all spin states
- Use the RASSI-SO program to mix a large number (preferably all) of spin states by spin-orbit coupling Exact energy spectrum and wave functions + matrix elements of L
- Use the SINGLE_ANISO program to compute the g tensor of the lowest groups of states, crystal field parameters of the lowest atomic multiplet, magnetic susceptibility and molar magnetization

Expression for magnetic susceptibility

Van-Vleck susceptibility expressed in terms of matrix elements of magnetic moment:

$$\chi_{\alpha\beta}T = \frac{N_A \mu_B^2}{k \sum_{i=1}^{NSS} e^{-\frac{E_i}{kT}}} \sum_{i=1}^{NSS} \left[\sum_{j=1}^{NSS} \left(\left\langle i \left| \hat{\mu}_{\alpha} \right| j \right\rangle \left\langle j \left| \hat{\mu}_{\beta} \right| i \right\rangle - \frac{kT \left(\left\langle i \left| \hat{\mu}_{\alpha} \right| j \right\rangle \left\langle j \left| \hat{\mu}_{\beta} \right| i \right\rangle + \left\langle j \left| \hat{\mu}_{\alpha} \right| i \right\rangle \left\langle i \left| \hat{\mu}_{\beta} \right| j \right\rangle \right)}{E_i - E_j} \right) \right] e^{-\frac{E_i}{kT}}$$

and

$$\chi T_{powder} = \frac{1}{3} \left(\chi T_{XX} + \chi T_{YY} + \chi T_{ZZ} \right).$$

For the calculation of magnetization we need the eigenvalues as function of magnetic field.

Calculation of molar magnetization

molar magnetization

$$\sum_{m_{H}=1}^{NM} \left[\langle m_{H} \left| \hat{\mu}_{\gamma} \right| m_{H} \rangle - \mu_{B} \sum_{n=NM+1}^{NSS} \frac{\sum_{\alpha=1}^{3} \left(\langle m_{H} \left| \hat{\mu}_{\alpha} \right| n \rangle \langle n \left| \hat{\mu}_{\gamma} \right| m_{H} \rangle + \langle n \left| \hat{\mu}_{\alpha} \right| m_{H} \rangle \langle m_{H} \left| \hat{\mu}_{\gamma} \right| n \rangle \right) \vec{H}_{\gamma} \right] e^{-\frac{E_{H}(m_{H})}{kT}} + \sum_{n=1}^{NSE} e^{-\frac{E_{H}(m_{H})}{kT}} + \sum_{n=1}^{NSS} e^{-\frac{E(n)}{kT}} + \sum_{n=1}^{NSS} e^{-\frac{E(n)}{kT}} + \frac{\sum_{n=1}^{NSS} \left[\frac{\mu_{B}}{kT} \sum_{j=1}^{NSS} \left(\sum_{\alpha=1}^{3} \langle n \left| \hat{\mu}_{\alpha} \right| j \rangle \langle j \left| \hat{\mu}_{\gamma} \right| n \rangle \right) \vec{H}_{\gamma} - \sum_{j=1}^{NSS} \sum_{\alpha=1}^{3} \left(\langle n \left| \hat{\mu}_{\alpha} \right| j \rangle \langle j \left| \hat{\mu}_{\gamma} \right| n \rangle + \langle j \left| \hat{\mu}_{\alpha} \right| n \rangle \langle n \left| \hat{\mu}_{\gamma} \right| j \rangle \right) \vec{H}_{\gamma} \right] e^{-\frac{E(n)}{kT}} + \frac{\sum_{n=1}^{NSS} e^{-\frac{E(n)}{kT}}}{E(n) - E(j)} e^{-\frac{E(n)}{kT}} + \frac{\sum_{n=1}^{NSS} e^{-\frac{E(n)}{kT}}}{E(n) - E(j)} e^{-\frac{E(n)}{kT}} + \frac{E(n)}{kT} e^{-\frac{E(n)}{kT}} e^{-\frac{E(n)}{kT}} + \frac{E(n)}{kT} e^{-\frac{E(n)}{kT}} e^{-\frac{E(n)}{kT}} e^{-\frac{E(n)}{kT}} + \frac{E(n)}{kT} e^{-\frac{E(n)}{kT}} e^{-\frac{E(n)}{kT}}$$

where:

 m_{H} – states obtained by diagonalization of the Zeeman matrix

 $E_H(m_H)$ – the Zeeman energy of the state m_H

n, j – states unperturbed by magnetic field, i.e. the states which are higher in energy than the cut-off energy *EM*.

KATHOLIEKE UNIVERSITEIT

E(n), E(j) - the spin-orbit energy of the states *n* and *j*.

Effect of intermolecular interaction on the magnetization vector and magnetic susceptibility

$$\begin{split} \hat{\mathbf{H}}_{Zee} &= \sum_{\alpha} \left(-\hat{\mu}_{\alpha} H_{\alpha} - z J' \hat{S}_{\alpha} \left\langle S_{\alpha} \right\rangle \right); \qquad \mathbf{E}_{n} = f\left(\left\langle S_{\alpha} \right\rangle \right) \\ \left\langle \vec{M} \right\rangle_{\vec{H}} &= \frac{\sum_{n} \left\langle n \left| \vec{\mu} \right| n \right\rangle e^{-\frac{E_{n}}{kT}}}{\sum_{n} e^{-\frac{E_{n}}{kT}}}; \qquad \left\langle \vec{S} \right\rangle_{\vec{H}} = \frac{\sum_{n} \left\langle n \left| \vec{S} \right| n \right\rangle e^{-\frac{E_{n}}{kT}}}{\sum_{n} e^{-\frac{E_{n}}{kT}}} \end{split}$$

Molar magnetization: Solve self-consistently the equation for $\langle \vec{S} \rangle_{\vec{H}}$ and then substitute E_n into the calculation of $\langle \vec{M} \rangle_{\vec{H}}$

The susceptibility tensor:

$$\chi_{\alpha\beta} = \chi_{\alpha\beta}^{(0)} + zJ'\sum_{\gamma} \mathbf{A}_{\alpha\gamma} \sum_{\delta} (\mathbf{1} - zJ \mathbf{B})_{\gamma\delta}^{-1} \mathbf{A}_{\delta\beta}; \quad \text{where} \quad \chi_{\alpha\beta}^{(0)} - \text{susceptibility tensor of the magnetic center alone}$$

$$\mathbf{A}_{\alpha\beta} = \frac{\sum_{n} e^{-\frac{E_{n}}{kT}} \sum_{ij} \left[\frac{1}{kT} \langle n_{i} | \hat{\mu}_{\beta} | n_{j} \rangle \langle n_{i} | \hat{S}_{\alpha} | n_{j} \rangle - \sum_{m} \frac{\langle n_{i} | \hat{\mu}_{\beta} | m_{j} \rangle \langle m_{j} | \hat{S}_{\alpha} | n_{i} \rangle + \langle m_{j} | \hat{\mu}_{\beta} | n_{i} \rangle \langle n_{i} | \hat{S}_{\alpha} | m_{j} \rangle}{E_{n} - E_{m}} \right]}{\sum_{n} e^{-\frac{E_{n}}{kT}}}$$

$$B_{\alpha\beta} = \frac{\sum_{n} e^{-\frac{E_{n}}{kT}} \sum_{ij} \left[\frac{1}{kT} \langle n_{i} | \hat{S}_{\beta} | n_{j} \rangle \langle n_{i} | \hat{S}_{\alpha} | n_{j} \rangle - \sum_{m} \frac{\langle n_{i} | \hat{S}_{\beta} | m_{j} \rangle \langle m_{j} | \hat{S}_{\alpha} | n_{i} \rangle + \langle m_{j} | \hat{S}_{\beta} | n_{i} \rangle \langle n_{i} | \hat{S}_{\alpha} | m_{j} \rangle}{E_{n} - E_{m}} \right]}{\sum_{n} e^{-\frac{E_{n}}{kT}}}$$

Ab initio treatment of magnetism of mononuclear complexes and fragments

Magnetic properties

 $\chi_{\alpha\beta}(T,H)$ - susceptibility tensor $\chi(T,H)$ - powder susceptibility $M_{\alpha}(T,H)$ - magnetization vector M(T,H) - powder magnetization - Zeeman splitting

Crystal-Field for Ln

Pseudospin Hamiltonians

 $D_{\alpha\beta}$ - second order ZFS tensor

- $g_{\alpha\beta}$ first order gyromagnetic tensor
 - Higher-order ZFS and

Zeeman Hamiltonians

- New: the sign of the product
 - $g_X g_Y g_Z$ is evaluated.

Now implemented in MOLCAS - 7.8

SINGLE_ANISO as a module in MOLCAS

required programs to run before SINGLE_ANISO

Molcas flowchart

Ab initio Crystal Field for Lanthanides

L. Ungur, L. F. Chibotaru, J. Am. Chem. Soc., 2013, submitted.

- Use the lowest CASSCF/RASSI wave functions $\{\Psi_n\}$ of the complex corresponding to the ground atomic multiplet on Ln
- Make the correspondence $\{\Psi_n\} \rightarrow \{|J,M\rangle\}$:
 - Define the coordinate system and the main quantization axis;
 - Make the correspondence $\{\Psi_n\} \rightarrow \{|J,M\rangle\}$ $|\Psi_i\rangle = \sum_M c_{iM} |\tilde{J},M\rangle$ Rewrite the CASSCF/RASSI matrix

$$\mathbf{H}_{\mathsf{CF}} = \sum_{i}^{2J+1} E_{i} |\Psi_{i}\rangle \langle \Psi_{i}| \qquad \langle \mathcal{M} | \mathbf{H}_{\mathsf{CF}} | \mathcal{M}' \rangle = \sum_{i}^{2J+1} E_{i} C_{iM}^{*} C_{iM'}$$

Use the irreducible tensor technique to extract parameters of the Crystal-Field

Ab initio Crystal Field for Lanthanides

L. Ungur, L. F. Chibotaru, J. Am. Chem. Soc. , 2013, submitted.

Irreducible tensor operators:

$$O_n^m = \frac{1}{2} \left(\left(-1 \right)^m O_n^{+m} + O_n^{-m} \right) \qquad \Omega_n^m = \frac{1}{2i} \left(\left(-1 \right)^m O_n^{+m} - O_n^{-m} \right)$$

The Crystal Field Matrix can be recovered as follows:

$$\mathbf{H}_{\mathsf{CF}} = \sum_{n=2,4,6} \alpha_n \left(\sum_{m=0}^n \boldsymbol{B}_{nm}^c \mathbf{O}_{\mathsf{n}}^{\mathsf{m}} + \sum_{m=1}^n \boldsymbol{B}_{nm}^s \Omega_{\mathsf{n}}^{\mathsf{m}} \right)$$

This is a **<u>one-to-one mapping</u>** of the *ab initio* calculated energy matrix!

The obtained set of parameters is **unique**!

Implemented in SINGLE_ANISO in MOLCAS 7.8

Ab initio Crystal Field for Lanthanides

L. Ungur, L. F. Chibotaru, J. Am. Chem. Soc. , 2013, submitted.

- Extended Stevens Operators (ESO) as defined in:
 - Rudowicz, C.; J. Phys. C: Solid State Phys.,18 (1985) 1415-1430.
 - in the "EasySpin" function in MATLAB, www.easyspin.org.
- The Crystal Field Matrix:

$$\mathbf{H}_{\mathsf{CF}} = \sum_{k,q} B_k^q \mathbf{O}_k^q$$

- *k* the rank of the ITO, = 2, 4, 6, 8,10,12.
- q the component (projection) of the ITO, = -k, -k+1, ... 0, 1, ... k;

Implemented in SINGLE_ANISO in MOLCAS 7.8

Ab initio extracted Crystal-Field: [Tb(pc)₂]⁻

- CASSCF/RASSI calculations of the entire molecule with MOLCAS 7.8 package
- SINGLE_ANISO calculation of magnetic properties

Real vs symmetrized [Tb(pc)₂]⁻

KATHOLIEKE UNIVERSITEIT

Ab initio extracted Crystal-Field: Dy³⁺ from DyZn₃

KATHOLIEKE UNIVERSITEIT

Ab initio extracted Crystal-Field: Ho³⁺ from Ho₂

KATHOLIEKE UNIVERSITEIT

Ab initio extracted Crystal-Field: Yb³⁺ in an almost O_h environment

	S=1/2	KD		g
		(J=7/2)		
			g _x	3.2098
²F	0.0 49.7 87.7 346.0 477.4 524.8	0.0	g _Y	2.6944
			gz	1.7634
		187.9	g _x	1.9936
			g _Y	2.2654
			gz	3.6065
		300.0	g _x	0.1556
			g _Y	0.7852
			gz	3.1483
	572.0		g _x	1.8265
		485.0	g _Y	3.2849
			gz	4.8065

Ab initio extracted Crystal-Field: Yb³⁺ in an almost O_h environment

Ν	Μ	B_{nm}^c	B_{nm}^s
	0	-42.3	
2	1	-164.9	-11.1
	2	107.8	-50.7
	0	-542.0	
	1	943.7	-881.5
4	2	-33.6	858.4
	3	472.1	335.2
	4	1231.9	44.0
	0	-11.9	
	1	7.9	-7.7
	2	1.6	-5.8
6	3	-32.3	-27.8
	4	-4.6	3.0
	5	14.4	-6.8
	6	-2.6	24.0

Ab initio extracted Crystal-Field: [Cp*-Er-COT]⁻

Ab initio extracted Crystal-Field: [Cp*-Tb-COT]⁻

Energy	Ν	Μ	B_{nm}^c	B_{nm}^s
0.0		0	-211.8	
17.0	2	1	15.3	-36.7
31.6		2	-18.0	2.1
86.9		0	-66.6	
88.9		1	-6.3	147.9
149.5	4	2	60.4	5.1
149.9		3	1.8	-13.6
167.1		4	-0.8	-0.1
167.1				
234.5		0	27.0	
234.7		1	-2.4	3.7
341.4		2	32.8	4.9
341.4	6	3	6.3	-27.6
		4	-7.2	-1.0
		5	-2.0	4.5
		6	3.5	2.3

KATHOLIEKE UNIVERSITEIT

Ab initio extracted Crystal-Field: [Cp*-Tm-COT]⁻

Energy	Ν	Μ	B_{nm}^c	B_{nm}^s
0.0		0	-317.0	
0.0	2	1	1.9	-3.2
215.2		2	38.8	64.8
215.8		0	-90.6	
295.9		1	-20.4	35.7
306.2	4	2	1.9	3.3
348.4		3	1.8	0.0
358.6		4	0.0	0.0
360.6		0	-8.3	
404.7		1	-14.1	25.4
411.4		2	5.6	9.1
436.4	6	3	5.1	0.0
437.7		4	0.1	0.0
		5	-1.9	-3.2
		6	-2.7	0.1

KATHOLIEKE UNIVERSITEIT

Semi *ab initio* calculation of magnetic properties of polynuclear complexes

Semi - *ab initio* treatment of magnetism in polynuclear complexes and fragments

- Employing a model fragmentation of the polynuclear complex.
- *Ab initio* treatment of individual fragments:

CASSCF (CASPT2) RASSI-SO SINGLE_ANISO

SINGLE_ANISO produces an input file for POLY_ANISO.

- Lines model: Treatment of exchange interactions
 - 1. Introduce an effective $\hat{H}_{exch} = -\sum_{ij} J_{ij} \mathbf{S}_{ij} \cdot \mathbf{S}_{j}$
 - 2. The dipolar magnetic coupling can be considered exact:
 - 3. Diagonalize \hat{H}_{exch} in the basis of lowest spin–orbit states on sites $\{\Gamma_i\} \otimes \{\Gamma_i\}$
 - $(J_{ij}$ fitting parameters)
 - 4. Calculate all magnetic properties and parameters of magnetic Hamiltonians

 $\frac{\mu_B^2(\boldsymbol{\mu}_1 \cdot \boldsymbol{\mu}_2 - 3(\boldsymbol{\mu}_1 \mathbf{r}_1) \cdot (\boldsymbol{\mu}_2 \mathbf{r}_2))}{r^3}$

Semi - *ab initio* treatment of magnetism in polynuclear complexes and fragments

Dy₃ isosceles triangle:

Y.-X. Wang, W. Shi, H. Li, Y. Song, L. Fang, Y. Lan, A. K. Powell, W. Wernsdorfer, L. Ungur, L. F. Chibotaru, M. Shenc, P. Cheng, *Chem. Sci.*, **2012**, *3*, 3366-3370.

KD	Dy1	Dy2	Dy3
1	0.000	0.000	0.000
1 2	108.778	239.577	225.784
2	202.571	459.170	485.721
5	286.735	546.174	634.670
4 5	322.050	587.706	672.382
5	385.913	642.290	711.704
7	458.087	709.691	753.551
Q	524.465	979.880	834.336
0			
Ν	/lain values of the g-	tensor for the lo	owest doublets
g _x	0.0528	0.0020	0.0024
g _Y	0.0793	0.0024	0.0028
gz	19.7092	19.8247	19.8525
Angle	e between the main	magnetic axis g	$_7$ and the Dy ₃ plane
		(degrees)	
	6.657	0.568	10.398
Intoract	ion I	1	1 11
1-2	1 608	J _{dip} 5.428	Jexch T Jdip 7 036
2-3	1.608	5.293	6.901
3-1	1.311	2.959	4.270

KATHOLIEKE UNIVERSITEIT

Dy₃ isosceles triangle:

Y.-X. Wang, W. Shi, H. Li, Y. Song, L. Fang, Y. Lan, A. K. Powell, W. Wernsdorfer, L. Ungur, L. F. Chibotaru, M. Shenc, P. Cheng, *Chem. Sci.*, **2012**, *3*, 3366-3370.

KATHOLIEKE UNIVERSITEIT

LEUVEN

KMagheticeAmisolado workshop, Karlsruhe 11-12 October 2013

Isostructural series of mixed 4f-3d SMM's : Co-Ln-Co, Ln = Gd, Tb, Dy

The approximate symmetry of the first coordination sphere of Co²⁺ centers is a distorted trigonal prism

The SMM behavior is mainly due to the strong anisotropy on Co²⁺ centers

Co-Gd-Co > Co-Tb-Co > Co-Dy-Co

Ab initio calculation of Co fragments (CASSCF-calculations)

2S+1	CoGdCo		CoTbCo		CoDyCo	
	Co1	Co2	Co1	Co2	Co1	Co2
	0.0	0.0	0.0	0.0	0.0	0.0
	49.6	120.0	170.6	89.0	95.2	56.6
	3410.2	3551.6	3477.2	3412.4	4142.0	4033.8
	7868.3	8384.0	8153.9	7985.3	7195.5	7510.5
Л	8167.9	8417.1	8175.9	8224.8	7381.0	7567.4
4	8959.1	9364.8	9082.5	8994.5	8262.2	8512.8
	16091.0	16784.3	16287.7	16157.6	13963.9	14595.8
	23555.8	23965.2	23691.6	23732.3	23018.0	23165.0
	23655.9	24108.9	23814.0	23784.3	23083.2	23382.7
	23980.6	24166.4	24083.1	23893.2	23314.7	23497.5
	14594.1	14367.8	14594.9	14592.0	15865.5	15530.8
	14783.7	14488.8	14751.3	14723.2	16017.1	15640.9
	19775.6	19798.0	19790.9	19828.5	19925.2	19861.0
	19854.3	19873.0	19956.5	19864.4	19946.6	19933.8
	20396.0	20473.7	20475.6	20409.4	20382.5	20395.8
2	21012.2	21125.9	21105.9	21036.6	21020.6	21039.2
	21134.3	21161.3	21159.1	21152.1	21063.3	21074.8
	21643.7	21710.8	21699.4	21648.4	22124.4	22031.2
	25940.3	26268.2	26080.7	26015.9	25266.8	25498.3
	26112.0	26282.4	26201.6	26129.2	26035.9	26105.2

. . .

. . .

KATHOLIEKE UNIVERSITEIT

Ab initio calculation of Co fragments (RASSI –calculations)

CoGdCo		CoTbCo		CoDyCo	
Co1	Co2	Co1	Co2	Co1	Co2
0.0 248.6 536.5 852.0 3771.5 3847.3 8240.1 8303.5 8612.5 8676.8 9398.1 0426 7	0.0 242.2 549.0 856.1 3880.7 3954.7 8646.4 8749.4 8856.8 8967.1 9767.6	0.0 235.8 565.8 868.0 3786.4 3862.0 8393.3 8498.0 8602.7 8713.2 9469.3 0405 7	0.0 246.5 544.1 857.3 3756.8 3832.8 8328.2 8400.1 8654.1 8726.5 9415.4	0.0 257.8 570.6 896.0 4467.1 4549.2 7528.7 7626.4 7842.7 7932.6 8712.6 8722.0	0.0 258.6 558.8 883.8 4381.7 4460.8 7815.0 7931.2 8059.1 8171.5 8976.7
9420.7	9794.4	9495.7	9440.9	6732.9	6966.6

Ab initio calculation of Co fragments (SINGLE_ANISO)

		CoGdCo					
KD		Co	01	Co	02		
		E	g	E	g		
	g _x		0.4197		0.4066		
1	g _Y	0.000	0.4233	0.000	0.4155		
	gz		9.2928		9.2570		
	g _x		0.5064		1.4578		
2	g _Y	248.686	0.9614	242.221	1.9117		
	gz		5.2042		4.9886		
	g _x		0.6653		0.9821		
3	g _Y	536.549	0.8109	549.084	1.6751		
	gz		1.2123		1.7170		
	g _x		0.0425		0.0063		
4	$\mathbf{g}_{\mathbf{Y}}$	852.041	0.0639	856.123	0.0258		
	gz		2.7922		2.8266		

The Co²⁺ centers have an unquenched orbital moment in the ground state:

Unquenched orbital moment of Co²⁺ in a perfect prismatic environment

 CoO_3N_3 core has original geometry from X-Ray experiment. The H atoms saturate the broken O-C or N-C bonds.

 $CoO_3N_3H_{12}$ fragment was symmetrized towards C_{3v} symmetry.

Unquenched orbital moment of Co²⁺ in a perfect prismatic environment

	Original geometry						
	SFS	KD		g			
	0.0		g _x	0.1858			
	78.3	0.0	g _Y	0.1865			
	4637.8		gz	9.5528			
4	5814.7 6009.0 7592.0 	260.2	g _x g _y g _z	1.0181 1.2129 5.4266			
	16956.6 17122.0 19763.0	573.5	g _x g _y g _z	1.0486 1.1674 1.4079			
2	19785.4 20304.1 20775.8 	908.7	g _x g _y g _z	0.0265 0.0537 2.5510			

	Symmet	rized C _{3v}	geor	netry
	SFS	KD		g
	0.000		g _x	0.0066
	0.010	0.0	g _Y	0.0066
	5508.5		gz	9.8032
4	5508.5			
	7512.6		g _x	0.0032
	7810.3	286.3	g _Y	0.0035
	9433.9		gz	5.8128
	19124.9		g _x	0.0001
	19124.9	613.3	g _Y	0.0001
	19658.3		gz	1.8155
2	19658.3		σ	0 0108
	20423.0	076 7	δχ	0.0100
	20423.0	570.7	δγ	2 1010
			δz	2.1910

<L_Z>≈ 1.9μ_B

LIEKE UNIVERSITEIT

Magnetic Anisotropy workshop, Karlsruhe 11-12 October 2013

<**L**₇>≈ 1.8μ_B

Unquenched orbital moment of Co²⁺ in a perfect trigonal prismatic environment

For a d⁷ configuration in a trigonal prismatic environment

KATHOLIEKE UNIVERSITEIT

 $\langle L_z \rangle < 2$

 \implies

Magnetic Anisotropy workshop, Karlsruhe 11-12 October 2013

LEUVE

Unquenched orbital moment of [Mo(CN)₇]⁴⁻

Mironov, L.F. Chibotaru, A. Ceulemans, J. Am. Chem. Soc, 2003, 125, 9750-9760 a) b) c) $z^2 - m_l = 0$

Figure 1. Structure of the $[Mo(CN)_7]^{4-}$ heptacyanometalate: (a) the idealized pentagonal bipyramid (D_{5h} symmetry group) and (b) real distorted bipyramid; the polar (θ) and azimuthal (ϕ)

Figure 3. Electronic structure of the $[Mo(CN)_7]^{4-}$ heptacyanometalate: (a) Mo 4d orbital energies in a regular D_{5h} pentagonal bipyramid, (b) the energy spectrum of MoIII(4d³) in the D_{5h} bipyramid without spin-orbit coupling, and (c) the energy spectrum of MoIII(4d³) in the D_{5h} bipyramid with the spin-orbit coupling. The orbital composition of the ground $\phi(\pm 1/2)$ and excited $\chi(\pm 1/2)$ Kramers doublets is shown; (d) the splitting of 4d orbital energies in distorted $[Mo(CN)_7]^{4-}$ complexes.

KMagnatileAmisotඅolهy workshop, Karlsruhe 11-12 October 2013

Ab initio based calculation of magnetism in Co-Gd-Co, Co-Tb-Co and Co-Dy-Co (Poly_Aniso routine)

 $H_{exch} = -J_1 \left(S_{Co1} \cdot S_{Ln} + S_{Co2} \cdot S_{Ln} \right) - J_2 S_{Co1} \cdot S_{Co2}$

Exchange energy spectrum and orientation of local magnetic moments in Co-Gd-Co

Structure of the blocking barrier in Co-Gd-Co

Exchange energy spectrum and orientation of local magnetic moments in Co-Tb-Co

Structure of the blocking barrier in Co-Tb-Co

Exchange energy spectrum and orientation of local magnetic moments in Co-Dy-Co

Structure of the blocking barrier in Co-Dy-Co

KATHOLIEKE UNIVERSITEIT