| Universität Bielefeld | Symmetrien in der Physik | Prof. Dr. Jürgen Schnack  |
|-----------------------|--------------------------|---------------------------|
| Fakultät für Physik   | WS 2014/2015             | jschnack@uni-bielefeld.de |

## Problem sheet 10

**10.1** C<sub>5v</sub>



The regular pentagon possesses the symmetry  $C_{5v}$ . This group contains 10 elements.

- a. Identify the group elements.
- b. How many conjugacy classes does the group possess and how many elements are contained in each of the classes?
- c. How many irreducible representations do exist?
- d. Look up the character table from literature.

## 10.2 Two-dimensional coordinate vector in $C_{5v}$

The vector  $\vec{r}$  shall be transformed according to  $C_{5v}$  in a two-dimensional space  $\mathbb{R}^2$  with carthesian coordinates.

- a. Represent the group operations by  $2 \times 2$ -matrices.
- b. Set up the character table for this representation.
- c. Is this representation reducible or not?

## 10.3 LCAO using point group symmetry

The construction of trial states from atomic orbitals is termed *Linear Combination of* Atomic Orbitals (LCAO).

A fictitious molecule of five atoms possesses  $C_{5v}$  symmetry. The 1s wave function of one atom is known. Construct the symmetry-adapted wave functions for the charged molecule (5 cores, 1 electron) using first  $C_5$  and then  $C_{5v}$ . Start by considering how the symmetry operations act on the 1s wave function. Then construct an invariant subspace and apply the basis function generating machine.

## 10.4 Extra problem: 3*d*-orbitals in a ligand field

If atoms or ions of a chemical compound are surrounded by other atoms or ions, their atomic levels can be modified according to the symmetry of the environment. Such is statement is meant in a perturbation theory sense, since in full beauty the many-body problem does not allow to speak of atomic levels of the central ion.

In a perturbation theory approach in atomic and molecular physics as well as in chemistry one studies which basis sets of irreducible representations of a point group can be formed of the eigenfunctions belonging to a certain angular momentum quantum number.

a. Study how the following five real functions can be constructed from the spherical harmonics of l = 2:

$$\frac{1}{\sqrt{2}} \left( 3\cos^2\theta - 1 \right) \ , \sqrt{6}\sin\theta \ \cos\theta \ \cos\phi \ , \sqrt{6}\sin\theta \ \cos\theta \ \sin\phi \ , \tag{1}$$

$$\sqrt{\frac{3}{2}}\sin^2\theta \,\cos(2\phi) \,, \sqrt{\frac{3}{2}}\sin^2\theta \,\sin(2\phi) \,. \tag{2}$$

- b. Study which irreducible basis functions can be build up in case of  $D_4$  (z-axis as rotational axis).
- c. Several chemical environments are octahedral, the respective point group is  $O_h$ . From the *d* orbitals one can form functions belonging to the irreducible representations  $E_g$  and  $T_{2g}$ . What does this mean? How many functions belong to each irreducible representation if  $E_g$  and  $T_{2g}$  are the only ones?