Universität Bielefeld	Theoretische Physik II	Prof. Dr. Jürgen Schnack
Fakultät für Physik	SS 2013	jschnack@uni-bielefeld.de

Aufgabenblatt 8

8.1 δ -Potential

Extrem kurzreichweitige Kräfte werden in der Quantenmechanik oft durch ein Potential beschrieben, das die folgende Form

$$V(x) = \alpha \delta(x) \tag{1}$$

besitzt. α ist dabei eine reelle Konstante.

- a. Leiten Sie die Stetigkeitsbedingung für die Wellenfunktion bei x=0 her, indem Sie über ein kleines Intervall um Null integrieren und anschließend die Intervallänge gegen Null gehen lassen.
- b. Bestimmen Sie für $\alpha > 0$ den Transmissions- und den Reflexionskoeffizienten für eine von links einlaufende ebene Welle.
- c. Bestimmen Sie alle gebundenen Zustände sowie die zugehörigen Energie
eigenwerte für $\alpha < 0$.

8.2 Gaußsches Wellenpaket I

Gaußsche Wellenpakete spielen für das Verständnis der Quantenmechanik eine wichtige Rolle. Sie werden außerdem in der Quantenoptik sowie in Näherungsverfahren verwendet. Die Wellenfunktion des Gaußschen Wellenpakets in einer Raumdimension lautet

$$\langle x | \phi \rangle = c \exp \left\{ -\frac{(x - x_0)^2}{2a} + i \frac{x p_0}{\hbar} \right\}.$$
 (2)

 a, x_0 und p_0 sind dabei reell.

- a. Bestimmen Sie die Normierungskonstante c.
- b. Berechnen Sie die Erwartungswerte des Ortsoperators und des Impulsoperators, d.h. den mittleren Ort und den mittleren Impuls.
- c. Wie lautet die Impulsdarstellung des Gaußschen Wellenpakets?
- d. Überprüfen Sie die Heisenbergsche Unschärferelation.
- e. Lösen Sie die zeitabhängige Schrödingergleichung für die freie Bewegung (H = T) und geben Sie die Wellenfunktion für spätere Zeiten an.
- f. Was erhalten Sie für $\langle \phi(t) | x | \phi(t) \rangle$?

8.3 Gaußsches Wellenpaket II

In dieser Aufgabe soll herausgearbeitet werden, warum Gaußsche Wellenpakete so populär und didaktisch wertvoll sind. Gaußsche Wellenpakete, hier mit $|\vec{b}(t), a(t)\rangle$ bezeichnet, können sehr elegant mit Hilfe komplexer Parameter (gleich in drei Dimensionen) dargestellt werden:

$$\langle \vec{x} \mid \vec{b}(t), a(t) \rangle = \exp \left\{ -\frac{(\vec{x} - \vec{b}(t))^2}{2a(t)} \right\}. \tag{3}$$

Die komplexen Größen $\vec{b} = \vec{b}_R + i\vec{b}_I$ und $a = a_R + ia_I$ lassen sich nach folgenden Formeln in die reellen Größen \vec{r} und \vec{p} umwandeln:

$$\vec{b} = \vec{r} + ia\vec{k} = \vec{r} - a_I\vec{k} + ia_R\vec{k} \; ; \; \vec{r} = \vec{b}_R + \frac{a_I}{a_R}\vec{b}_I \; ; \; \vec{k} = \frac{1}{a_R}\vec{b}_I \; ; \; \vec{p} = \hbar\vec{k} \; .$$
 (4)

Dabei entsprechen die Parameter $\vec{r}(t)$ und $\vec{p}(t)$ dem mittleren Ort und Impuls.

Gaußsche Wellenpakete sind deshalb so großartig, weil sie Lösungen der zeitabhängigen Schrödingergleichung für drei wichtige Potentiale sind, $V(\vec{x}) = 0$, $V(\vec{x}) \propto \vec{x}$ und $V(\vec{x}) \propto \vec{x}^2$, d.h. freie Bewegung, Bewegung im Gravitationspotential und Bewegung im harmonischen Oszillator (mehr Probleme gibt's in der Physik genau genommen ja auch nicht, außer 1/r).

(a) Leiten Sie dafür die Zeitentwicklung des Wellenpaketes ab!

Anleitung: Arbeiten Sie mit der unnormierten Funktion (3). Schreiben Sie die zeitabhängige Schrödingergleichung hin. Die Zeitableitung wirkt auf die Parameter $\vec{b}(t)$ und a(t); schreiben Sie diese mit Hilfe der Kettenregel um. Der Hamiltonoperator enthält zweite Ableitungen und Terme proportional zu \vec{x} bzw. \vec{x}^2 . Der Trick besteht jetzt darin, letztere in erste Ableitungen nach $\vec{b}(t)$ und a(t) umzuschreiben

$$\vec{x} \longrightarrow a \frac{\partial}{\partial \vec{b}} + \vec{b}$$
 (5)

$$\vec{x}^2 \longrightarrow 2a^2 \frac{\partial}{\partial a} + 2a\vec{b} \cdot \frac{\partial}{\partial \vec{b}} + \vec{b}^2$$
 (6)

$$\frac{\partial^2}{\partial \vec{x}^2} \longrightarrow 2 \frac{\partial}{\partial a} - \frac{3}{a} \tag{7}$$

und dann die Bewegungsgleichungen für die Parameter $\vec{b}(t)$ und a(t) durch Koeffizientenvergleich der Terme vor den partiellen Ableitungstermen zu bestimmen.

- (b) Bestimmen Sie die Bewegungsgleichungen für $\vec{b}(t)$ und a(t) und diskutieren Sie den Spezialfall der freien Bewegung. Machen Sie sich die Relationen (5), (6) und (7) klar.
- (c) Welche Breite a muss das Wellenpaket haben, damit seine Breite im Harmonischen Oszillator konstant bleibt?

Literatur:

J. Schnack, Kurzreichweitige Korrelationen in der Fermionischen Molekulardynamik, Doktorarbeit, TH Darmstadt (1996), insbesondere S. 21 & 22

http://obelix.physik.uni-bielefeld.de/~schnack/publications/diss.pdf

H. Feldmeier, J. Schnack, Molecular Dynamics for Fermions, Rev. Mod. Phys. 72 (2000) 655-688