UOS	Theoretische Physik 2	Apl. Prof. Dr. Jürgen Schnack
Physik	Quantenmechanik, stat. TD	jschnack@uos.de

Aufgabenblatt 3

3.1 Hermitesche Operatoren

- a. Geben Sie die Definition für einen hermiteschen Operator an.
- b. Beweisen Sie, dass die Eigenwerte eines hermiteschen Operators reell sind.
- c. Beweisen Sie, dass die Eigenvektoren eines hermiteschen Operators, die zu verschiedenen Eigenwerten gehören, orthogonal sind.
- d. Geben Sie einen physikalischen Grund an, warum die Eigenwerte eines hermiteschen Operators reell sein sollten.

3.2 Eigenwerte und Eigenvektoren von Spinoperatoren

Der Operator s_z hat für ein Teilchen mit Spin s=1/2 die Eigenzustände $\{ |s_z+\rangle, |s_z-\rangle \}$. Die Basiszustände bilden eine Orthonormalbasis und seien stets in dieser Reihenfolge durchnummeriert.

a. Der Operator \underline{s}_x hat bezüglich dieser Basis die Darstellung

$$s_x \equiv \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} . \tag{1}$$

Schreiben Sie \underline{s}_x als Operator unter Zuhilfenahme des äußeren Produkts auf.

- b. Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix (1). Wie lauten die Eigenwerte? Stellen Sie die Eigenvektoren als Linearkombination der Eigenvektoren zu s_z dar.
- c. Stellen Sie die Eigenvektoren von s_z als Linearkombination der Eigenvektoren von s_z (1) dar.
- d. Die Vertauschungsrelationen für Drehimpulse lautet

$$\left[\underset{\sim}{s}_{x},\underset{\sim}{s}_{y}\right] = i \, \hbar \, \underset{\sim}{s}_{z} \,. \tag{2}$$

In diesem Ausdruck können die Indizes zyklisch vertauscht werden, d.h. $x \to y \to z \to x$. Da Sie die Darstellungen von \underline{s}_z und \underline{s}_x kennen, können Sie jetzt in einer Basis Ihrer Wahl (ich empfehle die Eigenbasis zu \underline{s}_z) die Darstellung von \underline{s}_y berechnen. Schreiben Sie \underline{s}_y als Operator unter Zuhilfenahme des äußeren Produkts der Eigenvektoren zu \underline{s}_z auf.

3.3 Eigenwerte und Eigenvektoren

Berechnen Sie die Eigenwerte und Eigenvektoren der Matrix

$$A = \begin{pmatrix} 1.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -0.5 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -0.5 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -0.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -0.5 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -0.5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -0.5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1.5 \end{pmatrix} . \tag{3}$$

Diese Matrix kann numerisch diagonalisiert werden. Allerdings kann man an der Struktur der Matrix erkennen, dass sich die Diagonalisierung vereinfachen läßt. Können Sie sich vorstellen wie? Begründen Sie Ihre Idee.