Universität Osnabrück	Theoretische Physik 2	Dr. Jürgen Schnack
Fachbereich Physik	Quantenmechanik, stat. TD	Dr. Maxim Gorkunov

Aufgabenblatt 8

8.1 δ -Potential

Extrem kurzreichweitige Kräfte werden in der Quantenmechanik oft durch ein Potential beschrieben, das die folgende Form

$$V(x) = \alpha \, \delta(x) \tag{1}$$

besitzt. α ist dabei eine reelle Konstante.

- a. Leiten Sie die Stetigkeitsbedingung für die Wellenfunktion bei x=0 her, indem Sie über ein kleines Intervall um Null integrieren und anschließend die Intervallänge gegen Null gehen lassen.
- b. Bestimmen Sie für $\alpha>0$ den Transmissions- und den Reflexionskoeffizienten für eine von links einlaufende ebene Welle.
- c. Bestimmen Sie alle gebundenen Zustände sowie die zugehörigen Energieeigenwerte für $\alpha < 0$.

8.2 Potentialwall

Leiten Sie den Transmissions- sowie den Reflexionskoeffizienten des Potentialswalls der Ausdehnung L und Höhe V_0 für eine von links einlaufende ebene Welle aus den Stetigkeitsbedingungen bei x=0 und x=L her.