Universität Osnabrück	Numerische Physik	PD Dr. Jürgen Schnack
Fachbereich Physik	WS 2003/2004	jschnack@uos.de

Aufgabenblatt 1

1.1 Fortran unter UNIX

- a. Loggen Sie sich auf luna.rz.uni-osnabrueck.de mit Ihrem Rechenzentrumsaccount (wie bei der Email) ein.
- b. Legen Sie ein Verzeichnis für Ihre Fortranprogramme an, z.B. NumPhys.
- c. Schreiben Sie ein dreizeiliges Fortran-programm, das die Zeile "Hello, World!" ausgibt. Der Fortran-Compiler heißt xlf.
- d. Schreiben Sie ein Programm, das die Primzahlen bis 100 berechnet. Beschreiben Sie die von Ihnen verwendete Methode in Worten.
- e. Editieren Sie ein File mit dem Namen Makefile, z.B. wie folgt

```
1
    FC = xlf
2
    FFLAGS = -0
3
4
    OBJS01 = HelloWorld.o
    OBJS02 = prim.o
5
6
7
8
    BINARIES = HelloWorld prim
9
10
    all: HelloWorld prim
11
12
     clean:
             rm $(BINARIES) *.o
13
14
15
16
17
    HelloWorld : $(OBJS01)
             $(FC) -o HelloWorld $(OBJS01) $(LIBS)
18
19
20
    prim : $(OBJSO2)
21
             $(FC) -o prim $(OBJSO2) $(LIBS)
```

Dieses Makefile können Sie für das Compilieren und Linken Ihrer Programme verwenden, der Aufruf lautet einfach make.

1.2 Mathematica und matlab

Rufen Sie die beiden Programme Mathematica und matlab auf und informieren Sie sich in der Hilfe

- a. wie man die Sinusfunktion im Intervall $[0, 2\pi]$ graphisch darstellt;
- b. wie man eine Liste von Wertepaaren eingibt und graphisch darstellt.