
Fast Fourier transform

There are three kinds of Fourier transforms: finite discrete, infinite discrete, and continuous.
The first is defined by

Gj =
N−1∑
k=0

e
−2πikj/N

gk (1)

where i denotes the imaginary unit and j = 0, 1, . . . , N − 1. Because of

N−1∑
k=0

e
2πik(j − `)/N

= Nδj` (2)

we can proove

gk =
1
N

N−1∑
j=1

e
2πijk/N

Gj . (3)

Only the finite discrete Fourier transform is of interest in computational physics since a con-
tinuum has to be approximated by an interval, and an interval by a finite set of representative
points.
To be specific, we think about a time interval, tk = kτ for k = 0, 1, . . . , N − 1. fj = j/Nτ are
frequencies, and we may rewrite (1) and (2) into

Gj = G(fj) =
N−1∑
k=0

e
−2πifjtk gk (4)

and

gk = g(tk) =
1
N

N−1∑
j=0

e
2πifjtk Gj . (5)

Let us simulate a very noisy cosine signal. We set

1 % this file is noisy_cos.m
2 fbar=50;
3 tau=0.001;
4 N=1024;
5 t=tau*[0:N-1];
6 R=2.0;
7 g=cos(2*pi*fbar*t)+R*randn(size(t));
8 plot(t,g,’.’);
9 axis([min(t),max(t),-4,4]);

10 print -deps2 ’ncos1.eps’;

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

Figure 1: Noisy cosine (50 Hz) vs. time sampled at millisecond steps.

Would you recognize the cosine signal in Fig. 1?
We continue by implying the fast Fourier transform fft:

11 G=fft(g);
12 GG=fftshift(G);
13 f=[-N/2+1:N/2]/N/tau;
14 plot(f,abs(GG).^2);
15 print -deps2 ’ncos2.eps’;

In Fig. 2 we have plotted the spectral power S = |G(f)|2. The prominent peaks at f = ±50 Hz
are evident. The remaining spectral power is more or less constant which is an indicator for
white noise. Note that we have shifted G = G(f) such that the DC contribution (f = 0)
becomes centered.
How can one extract the signal so convincingly from a lot of noise? Not by looking at the
sampled data. They appear to be random. However, by performing a Fourier analysis, the
different harmonic contributions are excited with their proper phases, so that they add up.
If you know that the signal is spoilt by white noise, you may remove it to a large extent. You
might say

>> H=G.*(abs(G)>150);
>> h=ifft(H);

ifft denotes the inverse fast Fourier transform as described by (3).
You can do a lot more with the fast Fourier transform. Here are some examples:

• Differentiation: Fourier transform the signal and multiply by 2πif , and back Fourier

2

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18
x 10

4

Figure 2: Spectral power of noisy cosine vs. frequency (Hz).

transform. Thereby a much better precision can be achieved than by difference quo-
tients.

• Deconvolution: Often the output b(t) =
∫

ds r(s)a(t − s) is the convolution of a signal
a and a transmission function r. If the transmission function is known, then, from
B(f) = R(f)A(f), the signal can be reconstructed. Just divide the Fourier transformed
output by the Fourier transformed transmission function, and back Fourier transform.

• Differential equations with constant coefficients: Differentiation operators become mul-
tiplication operators after Fourier transformation, and differential equations become
algebraic equations.

• Data filtering and smoothing: remove the high frequency components.

The fast Fourier transform is an algorithm which takes into account that an operation on
2N data points are two operations on N data points. This reduces complexity from N2 to
N log(N) which makes all the difference.

3

