Heidelberg University EXERCISES SS 2003

Introduction to Computational Physics
Matthias Jamin
(Additional discussion on Friday, 4.7. and Monday, 7.7.)

EXERCISE 8.1: Eulers Algorithms

My implementation of the Euler algorithms in Mathematica is given in Ex8.1.m, where
SEuler[], MEuler[] and IEuler[] are the simple, modified and improved Euler algorithms
respectively. For their arguments see the explicit implementation. I have also written a func-
tion Compare[] to obtain the relative difference of two solutions. (Note that it only allows to
compare solutions with equal step size.) As two examples, I compare all results of the Euler
algorithms with the exact result y = tanz for A~ = 0.10 and A = 0.05, and with Com10 and
ComO05, one can plot the respective comparisons.

EXERCISE 8.2: Conserved Quantities

My implementation of this exercise can be found in Ex8.2.m. Similarly to exercise 8.1, here
SO0szi[] and MOszi[] are the routines corresponding to the simple and modified Euler algo-
rithms respectively. The commands ComESMx and ComESMv display a comparison of the relative
differences of these two solutions with the exact result for both position and velocity.

The algorithms which employ the energy conservation as an additional constraint are given in
SEOszi[] and MEOszi[]. This type of solution fails in the case of the simple Euler algorithm,
since both the absolute values of position and velocity become larger than one for certain times,
and consequently the square root becomes imaginary, leading to a breakdown of the algorithm.
Inspection shows that for the modified Euler algorithm, |v(¢)| < 1, and thus the procedure
works for this case. Nevertheless, the achieved precision is not better than for the modified
Euler algorithm without employing the additional information about FE.

EXERCISE 8.3: Runge-Kutta Algorithm

My implementation of this exercise can be found in Ex8.3.m. The respective function for Runge-
Kutta with adaptive step size is called RKA[]. It is not really fully developed, since it only
decreases the step size if the given precision is not matched, but does not increase it if the
result is already too precise, thus wasting time. In my program, I start with an initial step
size of h = 2, to demonstrate that it is decreased to h = 0.5 in order to match the precision.
According to the structure of the DGL, it can also be solved exactly, with the solution:

o(t) = % tanh<\/%t>.

A numerical comparison of the numerical and exact solution can be obtained with the command
Com, and plots of the various solutions with P1lotSol.

