Exact eigenstates of highly frustrated spin lattices probed in high fields

Jürgen Schnack, H.-J. Schmidt, A. Honecker, J. Schulenburg, and J. Richter

Osnabrück – Göttingen – Magdeburg, Germany http://obelix.physik.uni-osnabrueck.de/~schnack/

Yamada Conference LX on Research in High Magnetic Fields August 16-19, 2006, Sendai, Japan

Thanks to many collaborators ...

- K. Bärwinkel, H.-J. Schmidt, J. S., M. Allalen, M. Brüger, D. Mentrup, D. Müter, M. Exler, P. Hage, F. Hesmer, K. Jahns, F. Ouchni, R. Schnalle, P. Shchelokovskyy, S. Torbrügge & M. Neumann, K. Küpper, M. Prinz (UOS);
- M. Luban, P. Kögerler, D. Vaknin (Ames Lab, USA);
 J. Musfeld (U. of Tennessee, USA); N. Dalal (Florida State, USA);
- R.E.P. Winpenny (Man U, UK); L. Cronin (U. of Glasgow, UK);
 H. Nojiri (Tohoku University, Japan);
- A. Müller (U. Bielefeld) & Chr. Schröder (FH Bielefeld);
 - J. Richter, J. Schulenburg, R. Schmidt (U. Magdeburg);
 - S. Blügel, A. Postnikov (FZ Jülich); A. Honecker (U. Göttingen);
 - E. Rentschler (U. Mainz); U. Kortz (IUB); A. Tennant, B. Lake (HMI Berlin);
- B. Büchner, V. Kataev, R. Klingeler (IFW Dresden)

... who helped to obtain various general results

- 1. Extension of Lieb, Schultz, and Mattis: *k*-rule for spin odd rings
- 2. Rotational bands in antiferromagnets
- 3. Giant magnetization jumps in frustrated antiferromagnets
- 4. Magnetization plateaus and susceptibility minima
- 5. Enhanced magnetocaloric effect
- 6. Hysteresis without anisotropy
- 7. Special properties of a triangular molecule-based spin tube

My favorite starting point

{Mo₇₂Fe₃₀} – a molecular brother of the kagome lattice and an archetype of geometric frustration

- Giant magnetic Keplerate molecule;
- Structure: Fe yellow, Mo blue,
 O red;
- Antiferromagnetic interaction mediated by O-Mo-O bridges (1).
- Classical ground state of {Mo₇₂Fe₃₀}: three sublattice structure, coplanar spins (2);
- Quantum mechanical ground state S=0 can only be approximated, dimension of Hilbert space $(2s+1)^N \approx 10^{23}$ (3).

(1) A. Müller *et al.*, Chem. Phys. Chem. **2**, 517 (2001) , (2) M. Axenovich and M. Luban, Phys. Rev. B **63**, 100407 (2001) , (3) M. Exler and J. Schnack, Phys. Rev. B **67**, 094440 (2003)

← → → □ ? X Hamiltonian

Hamiltonian

Model Hamiltonian

• ← → → □ ? ×

Model Hamiltonian – Heisenberg-Model

$$H = \sum_{i,j} \vec{s}(i) \cdot \mathbf{J}_{ij} \cdot \vec{s}(j) + \sum_{i,j} \vec{D}_{ij} \cdot \left[\vec{s}(i) \times \vec{s}(j) \right] + \mu_B B \sum_{i}^{N} g_i \, s_z(i)$$
Exchange/Anisotropy Dzyaloshinskii-Moriya Zeeman

Very often anisotropic terms are utterly negligible, then ...

$$H = -\sum_{i,j} J_{ij} \, \vec{s}(i) \cdot \vec{s}(j) + g \, \mu_B \, B \sum_{i}^{N} \, \underline{s}_z(i)$$
Heisenberg Zeeman

The Heisenberg Hamilton operator together with a Zeeman term are used for the following considerations; J < 0: antiferromagnetic coupling.

From rotational bands to giant magnetization jumps

Rotational bands in antiferromagnets I

- Often minimal energies $E_{min}(S)$ form a rotational band: Landé interval rule (1);
- For bipartite systems (2,3): $H^{\text{eff}} = -2 J_{\text{eff}} \vec{S}_A \cdot \vec{S}_B$;
- Lowest band rotation of Néel vector, second band spin wave excitations (4).
- (1) A. Caneschi et al., Chem. Eur. J. 2, 1379 (1996), G. L. Abbati et al., Inorg. Chim. Acta 297, 291 (2000)
- (2) J. Schnack and M. Luban, Phys. Rev. B **63**, 014418 (2001)
- (3) O. Waldmann, Phys. Rev. B **65**, 024424 (2002)
- (4) P.W. Anderson, Phys. Rev. B 86, 694 (1952), O. Waldmann et al., Phys. Rev. Lett. 91, 237202 (2003).

• ← → • □ ? ×

Rotational bands in antiferromagnets II Approximate Hamiltonian for $\{Mo_{72}Fe_{30}\}$

$$\underbrace{H} = -2 J \sum_{(u < v)} \vec{\underline{s}}(u) \cdot \vec{\underline{s}}(v) \approx -2 J_{\mathsf{eff}} \left[\vec{\underline{S}}_A \cdot \vec{\underline{S}}_B + \vec{\underline{S}}_B \cdot \vec{\underline{S}}_C + \vec{\underline{S}}_C \cdot \vec{\underline{S}}_A \right] = \underbrace{H}^{\mathsf{eff}}$$

Three sublattice system, classical 120°-ground state; Good description of low-temperature magnetization.

J. Schnack, M. Luban, R. Modler, Europhys. Lett. 56, 863 (2001)

Surprise! The parabola is straight at least at the top end!

Giant magnetization jumps in frustrated antiferromagnets I $\{ \mathbf{Mo}_{72} \mathbf{V}_{30} \}$

- Close look: $E_{min}(S)$ linear in S for high S instead of being quadratic (1);
- Heisenberg model: property depends only on the structure but not on s (2);
- Alternative formulation: independent localized magnons (3);
- (1) J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001)
- (2) H.-J. Schmidt, J. Phys. A: Math. Gen. **35**, 6545 (2002)
- (3) J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)

Giant magnetization jumps in frustrated antiferromagnets II Localized Magnons

- | localized magnon $\rangle = \frac{1}{2} (|1\rangle |2\rangle + |3\rangle |4\rangle)$
- $|1\rangle = s^{-}(1)|\uparrow\uparrow\uparrow\ldots\rangle$ etc.
- $H \mid \text{localized magnon} \rangle \propto \mid \text{localized magnon} \rangle$
- Localized magnon is state of lowest energy (1,2).
- Triangles trap the localized magnon, amplitudes cancel at outer vertices.
- (1) J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001)
- (2) H.-J. Schmidt, J. Phys. A: Math. Gen. **35**, 6545 (2002)

← ← → **→ □** ? **×**

Giant magnetization jumps in frustrated antiferromagnets III Kagome Lattice

- Non-interacting one-magnon states can be placed on various lattices, e. g. kagome or pyrochlore;
- Each state of n independent magnons is the ground state in the Hilbert subspace with M=Ns-n; Kagome: max. number of indep. magnons is N/9;
- Linear dependence of E_{\min} on M \Rightarrow magnetization jump;
- Jump is a macroscopic quantum effect!
- A rare example of analytically known many-body states!
- J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)
- J. Richter, J. Schulenburg, A. Honecker, J. Schnack, H.-J. Schmidt, J. Phys.: Condens. Matter 16, S779 (2004)

Giant magnetization jumps in frustrated antiferromagnets IV Example: kagome chain

- Minimal energies E_{\min} of a kagome chain with N=36 and s=1/2.
- (T=0)-magnetization curve of the kagome chain with N=36. The magnetization jump is $\Delta M=6$ (1).
- (1) J. Schnack, H.-J. Schmidt, A. Honecker, J. Schulenburg, and J. Richter, cond-mat/0606401

Condensed matter physics point of view: Flat band

- Flat band of minimal energy in one-magnon space, i. e. high degeneracy of ground state energy in $\mathcal{H}(M=Ns-1)$;
- Localized magnons can be built from those eigenstates of the translation operator, that belong to the flat band;
- There is a relation to flat band ferromagnetism (H. Tasaki & A. Mielke), compare (1).
- (1) A. Honecker, J. Richter, Condens. Matter Phys. **8**, 813 (2005) J. Schnack, H.-J. Schmidt, A. Honecker, J. Schulenburg, and J. Richter, cond-mat/0606401

Enhanced magnetocaloric effect I Basics

$$\left(\frac{\partial T}{\partial B}\right)_S = -\frac{T}{C} \left(\frac{\partial S}{\partial B}\right)_T$$

(adiabatic temperature change)

- Heating or cooling in a varying magnetic field.
 Discovered in pure iron by E. Warburg in 1881.
- Typical rates: 0.5...2 K/T.
- Giant magnetocaloric effect: 3...4 K/T e.g. in $Gd_5(Si_xGe_{1-x})_4$ alloys ($x \le 0.5$).

- MCE especially large at large isothermal entropy changes, i.e. at phase transitions (1), close to quantum critical points (2), or due to the condensation of independent magnons (3).
- (1) V.K. Pecharsky, K.A. Gschneidner, Jr., A. O. Pecharsky, and A. M. Tishin, Phys. Rev. B 64, 144406 (2001)
- (2) Lijun Zhu, M. Garst, A. Rosch, and Qimiao Si, Phys. Rev. Lett. 91, 066404 (2003)
- (3) M.E. Zhitomirsky, A. Honecker, J. Stat. Mech.: Theor. Exp. **2004**, P07012 (2004)

Enhanced magnetocaloric effect II Simple af s=1/2 dimer

- Singlet-triplet level crossing leads to degenerate ground state and thus non-vanishing entropy at T=0.
- M(T=0,B) and S(T=0,B) not analytic as function of B.
- C(T,B) varies strongly as function of B for low T.

Enhanced magnetocaloric effect IV Isentrops of af s=1/2 dimer

Magnetocaloric effect:

- (a) reduced,
- (b) the same,
- (c) enhanced,
- (d) opposite

when compared to an ideal paramagnet.

Case (d) does not occur for a paramagnet.

blue lines: ideal paramagnet, red curves: af dimer

Enhanced magnetocaloric effect V Two molecular spin systems

- Graphics: isentrops of the frustrated cuboctahedron and a N=12 ring molecule;
- Cuboctahedron features independent magnons and extraordinarily high jump to saturation;
- Degeneracy and (T=0)—entropy at saturation field higher for the cuboctahedron;
- Adiabatic (de-) magnetization more efficient for the frustrated spin system.

Discussion

- In real compounds the perfect degeneracy at $B_{\rm sat}$ would be lifted, e.g. by dipolar or Dzyaloshinskii-Moriya interactions.
- Magnetization jump would be smeared out.
- Low-lying density of states remains large at $B_{\rm sat}$, which would still be clearly visible in magnetocaloric investigations.

Summary

Frustration can lead to exotic behavior.

And, the end is not in sight, ...

• ← → • □ ? ×

..., however, this talk is at its end!

Thank you very much for your attention.

German Molecular Magnetism Web

www.molmag.de

Highlights. Tutorials. Who is who. DFG SPP 1137