INFLUENCE OF INTERMOLECULAR INTERACTIONS ON MAGNETIC OBSERVABLES

Jürgen Schnack

Department of Physics – University of Bielefeld – Germany
http://obelix.physik.uni-bielefeld.de/~schnack/

DPG Spring Meeting
Dresden, 2017, March 21
Problem: How robust are static molecular magnetic observables?
Example: magnetization steps are fingerprints

No magnetization steps! Reasons? Your suggestions?

(1) M. Palacios, E. Pineda, S. Sanz, R. Inglis, M. Pitak, S. Coles, M. Evangelisti, H. Nojiri, C. Heesing, E. Brechin, J. Schnack, R. Winpenny, ChemPhysChem 17, 55 (2016);
(2) and many more examples.
Contents for you today

1. Anisotropic exchange
2. Randomness
3. Some basic theory
4. Intermolecular interactions

We are the sledgehammer team of matrix diagonalization.
Please send inquiries to jschnack@uni-bielefeld.de!
Anisotropic exchange

\[H \sim = -2 \sum_{i<j} \vec{s}_i \cdot J_{ij} \cdot \vec{s}_j \]

Matrix \(J_{ij} \) contains isotropic Heisenberg exchange, anisotropic symmetric exchange as well as anisotropic antisymmetric exchange (Dzyaloshinskii-Moriya).
Anisotropic symmetric exchange

Needs about 50 % of symmetric exchange to wash out magnetization steps.

Anisotropic antisymmetric exchange

Needs about 50 % of antisymmetric exchange to wash out magnetization steps.

Random exchange

\[H = -2 \sum_{i<j} \vec{s}_i J_{ij} \vec{s}_j \]

\(J_{ij} \in [(1 - r)J, (1 + r)J] \); random for each bond in each molecule, i.e. each molecule is different (\(\rightarrow \) average over many molecules).
Random exchange

Needs about 50 % of antisymmetric exchange to wash out magnetization steps.

Take home:

50 % anisotropic interactions or randomness is needed

(...to wash out e.g. magnetization steps.)
Before we proceed to intermolecular interactions . . .

Some basic theory
Summary: theory methods

- **Complete diagonalization**: exact; spectra, transitions, observables, time-evolution; Dimension of largest Hilbert space $< 10^5$.

- **Finite Temperature Lanczos Method (FTLM)**: pseudo-spectrum, low-lying levels good, transitions, observables, time-evolution; DoH $< 10^{10}$.

- **Quantum Monte Carlo (QMC)**: observables; bad/no convergence for competing interactions (frustration) due to negative sign problem; otherwise HUGE systems possible.

- **Density Matrix Renormalization Theory (DMRG)**: low-lying target states, correlation functions, short time evolution, maybe thermodynamics; best for 1-d; HUGE systems possible.
Intermolecular interactions
QMC investigation: Dimers in 1-d, squares in 2-d, cubes in 3-d. All interactions antiferromagnetic, all spins $s = 1/2$. $N = 100 \ldots 1000$. PBC.

Gradually af dimers turn into gapless af chain. Even at 50 % gap still large.

The two magnetization steps vanish more rapidly with intermolecular interactions in 2-d.

In 3-d 10 % intermolecular interactions sufficient to wash out magnetization steps.

Take home:

10 % intermolecular interactions in 3-d is enough

(...to spoil static molecular magnetic observables.)
Summary

- Magnetic molecules for storage, q-bits, MCE, and since they are nice.

- Quantum Monte Carlo can treat huge bipartite systems quasi exactly.

- In 3-d intermolecular interactions of 10 % strength wash out magnetization features.

- To spoil controlled time-evolution much less is needed, since influence of intermolecular interactions accumulates in the course of time.
Many thanks to my collaborators worldwide

- K. Bärwinkel, H.-J. Schmidt, M. Neumann (Osnabrück)

- M. Luban (Ames Lab, USA); P. Kögerler (Aachen, Jülich, Ames); D. Collison, R.E.P. Winpenny, E.J.L. McInnes, F. Tuna (Man U); L. Cronin, M. Murrie (Glasgow); E. Brechin (Edinburgh); H. Nojiri (Sendai, Japan); A. Postnikov (Metz); W. Wernsdorfer (Grenoble); M. Evangelisti (Zaragoza); E. Garlatti, S. Carretta, G. Amoretti, P. Santini (Parma); Gopalan Rajaraman (Mumbai)

- J. Richter, J. Schulenburg (Magdeburg); A. Honecker (Göttingen); U. Kortz (Bremen); A. Tennant, B. Lake (HMI Berlin); B. Büchner, V. Kataev, H.-H. Klauß (Dresden); P. Chaudhuri (Mühlheim); J. Wosnitza (Dresden-Rossendorf); J. van Slageren (Stuttgart); R. Klingeler (Heidelberg); O. Waldmann (Freiburg)
Thank you very much for your attention.

The end.
Molecular Magnetism Web

www.molmag.de