Quantenstatistik mit Supercomputern

Jürgen Schnack

Department of Physics - University of Bielefeld - Germany http://obelix.physik.uni-bielefeld.de/~schnack/

Eröffnungssymposium HPC3
Osnabrück, Germany, 11 October 2021

Size matters!

Osnabrück anno 2001

BULL: 4 Itanium dual core, 64 GB RAM

Bielefeld anno 2009

BULL: 16 nodes, 2 INTEL quadcore CPUs/node, 386 GB RAM, vSMP

Garching anno 2012

Supercomputer SuperMUC am Leibniz-Rechenzentrum in Garching: 3 PFLOPS/s, mehr als 150,000 Intel-Prozessor-Cores (Xeon E5)

And now Osnabrück again!

But why HPC?

You have got a molecule!

$S=60$!

Congratulations!

Powell group: npj Quantum Materials 3, 10 (2018)

You want to build a quantum computer!

Very smart!

Wernsdorfer group: Phys. Rev. Lett. 119, 187702 (2017)

You want to achieve quantum coherence!

Desperately needed!

Friedman group: Phys. Rev. Research 2, 032037(R) (2020)

You want to deposit your molecule!

Next generation magnetic storage!

Xue group: Phys. Rev. Lett. 101, 197208 (2008)

You want molecular magnetocalorics!

Cool!

Brechin group: Angew. Chem. Int. Ed. 51, 4633 (2012)

You have got an idea about the modeling!

Heisenberg
Zeeman

You have to solve the Schrödinger equation!

$$
\underset{\sim}{H}\left|\phi_{n}\right\rangle=E_{n}\left|\phi_{n}\right\rangle
$$

Eigenvalues E_{n} and eigenvectors $\left|\phi_{n}\right\rangle$

- needed for spectroscopy (EPR, INS, NMR);
- needed for thermodynamic functions (magnetization, susceptibility, heat capacity);
- needed for time evolution (pulsed EPR, simulate quantum computing, thermalization).

In the end it's always a big matrix!

$\mathrm{Fe}_{10}^{\mathrm{III}}: N=10, s=5 / 2, \operatorname{dim}(\mathcal{H})=(2 s+1)^{N}$
Dimension=60,466,176. Maybe too big?

Can we evaluate the partition function

$$
Z(T, B)=\operatorname{tr}(\exp [-\beta \underset{\sim}{\underset{\sim}{H}}])
$$

without diagonalizing the Hamiltonian?

Yes, with magic!

Quantum statistics with HPC (Magic + Power)

Solution I: trace estimators

$$
\begin{aligned}
\operatorname{tr}(\underset{\sim}{O}) & \approx\langle r| \underset{\sim}{O}|r\rangle=\sum_{\nu}\langle\nu| \underset{\sim}{\underset{\sim}{O}}|\nu\rangle+\sum_{\nu \neq \mu} r_{\nu} r_{\mu}\langle\nu| \underset{\sim}{O}|\mu\rangle \\
|r\rangle & =\sum_{\nu} r_{\nu}|\nu\rangle, \quad r_{\nu}= \pm 1
\end{aligned}
$$

- $|\nu\rangle$ some orthonormal basis of your choice; not the eigenbasis of $\underset{\sim}{O}$, since we don't know it.
- $r_{\nu}= \pm 1$ random, equally distributed. Rademacher vectors.
- Amazingly accurate, bigger (Hilbert space dimension) is better.
M. Hutchinson, Communications in Statistics - Simulation and Computation 18, 1059 (1989).

Solution II: Krylov space representation

$$
\exp [-\beta \underset{\sim}{H}] \approx \underset{\sim}{\underset{\sim}{1}}-\beta \underset{\sim}{\underset{\sim}{H}}+\frac{\beta^{2}}{2!}{\underset{\sim}{\sim}}^{2}-\cdots \frac{\beta^{N_{L}-1}}{\left(N_{L}-1\right)!}{\underset{\sim}{\sim}}_{\sim}^{N_{L}-1}
$$

applied to a state $|r\rangle$ yields a superposition of

$$
\underset{\sim}{1}|r\rangle, \quad \underset{\sim}{H}|r\rangle, \quad \underset{\sim}{H^{2}}|r\rangle, \quad \ldots \underset{\sim}{H^{N_{L}-1}}|r\rangle .
$$

These (linearly independent) vectors span a small space of dimension N_{L}; it is called Krylov space.
Let's diagonalize $\underset{\sim}{H}$ in this space!

Partition function I: simple approximation

$$
\begin{aligned}
Z(T, B) & \approx\langle r| e^{-\beta \underset{\sim}{H}}|r\rangle \approx \sum_{n=1}^{N_{L}} e^{-\beta \epsilon_{n}^{(r)}}|\langle n(r) \mid r\rangle|^{2} \\
O^{r}(T, B) & \approx \frac{\langle r| \underset{\sim}{O} e^{-\beta \underset{\sim}{H}}|r\rangle}{\langle r| e^{-\beta \underset{\sim}{H}}|r\rangle}=\frac{\langle r| e^{-\beta \underset{\sim}{H} / 2} \underset{\sim}{O} e^{-\beta \underset{\sim}{H} / 2}|r\rangle}{\langle r| e^{-\beta \underset{\sim}{H} / 2} e^{-\beta \underset{\sim}{H} / 2}|r\rangle}
\end{aligned}
$$

- Wow!!!
- One can replace a trace involving an intractable operator by an expectation value with respect to just ONE random vector evaluated by means of a Krylov space representation???
- Typicality = any random vector will do: $|r\rangle \equiv(T=\infty)$
J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).

Partition function II: Finite-temperature Lanczos Method

$$
Z^{\mathrm{FTLM}}(T, B) \quad \approx \frac{1}{R} \sum_{r=1}^{R} \sum_{n=1}^{N_{L}} e^{-\beta \epsilon_{n}^{(r)}}|\langle n(r) \mid r\rangle|^{2}
$$

- Averaging over R random vectors is better.
- $|n(r)\rangle$ n-th Lanczos eigenvector starting from $|r\rangle$.
- Partition function replaced by a small sum: $R=1 \ldots 100, N_{L} \approx 100$.
- Implemented in spinpack by Jörg Schulenburg (URZ Magdeburg); MPI and openMP parallelized, used up to 3072 nodes.

SPINPACK page: https://www-e.uni-magdeburg.de/jschulen/spin/

Matrix vector operations with HPC I

Matrix vector operations with HPC II

FTLM 1: ferric wheel

(1) J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020).
(2) $S U(2) \& D_{2}$: R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29, 403 (2010).
(3) $\mathrm{SU}(2) \& \mathrm{C}_{N}$: T. Heitmann, J. Schnack, Phys. Rev. B 99, 134405 (2019)

HPC3, go with throttle up!

Molecular Magnetism Web

www.molmag.de

Highlights. Tutorials. Who is who. Conferences.

