Quantenstatistik mit Supercomputern

Jürgen Schnack

Department of Physics – University of Bielefeld – Germany

http://obelix.physik.uni-bielefeld.de/~schnack/

Eröffnungssymposium HPC3

Osnabrück, Germany, 11 October 2021

Size matters!

Osnabrück anno 2001

					schnad	k@ singlet:~/h	рс		////// = • ×
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	Termin	al Ta <u>b</u> s	<u>H</u> elp					
top -	15:50:00	up 35 r	nin, 1	user,	load	average: 7	.72, 7.82,	6.41	*
						ing, 0 st			
Cpu0	: 100.0%	us, (0.0% sv.	0.0	0% ni.	0.0% id.	0.0% wa.	0.0% hi, 0.0% si	
Cpu1	: 100.0%	us, (0.0% sv.	0.0	0% ni.	0.0% id.	0.0% wa.	0.0% hi, 0.0% si	
Cpu2	: 100.0%	us, (0.0% sv.	0.0	0% ni.	0.0% id.	0.0% wa.	0.0% hi, 0.0% si	
								0.0% hi, 0.0% si	
	: 100.0%							0.0% hi. 0.0% si	
							0.0% wa	0.0% hi, 0.0% si	
Cpu6	: 100.0%	us, (0.0% sv.	0.0	0% ni,	0.0% id,	0.0% wa	0.0% hi, 0.0% si	
Cpu7	: 100.0%	us, (0.0% sv.	0.0	0% ni,	0.0% id,	0.0% wa	0.0% hi, 0.0% si	
Men:	66751936	c total	, 98737	92k us	sed, 5	6878144k fr	ee, 1426	556k buffers	
Swap:	2047872	k total		Ok us	sed.	2047872k fr	ee, 3590	040k cached	
PID	USER	PR N	I VIRT	RES	SHR S	%CPU %MEM	TIME+	COMMAND	
5390	schnack	25 (0 15.6g	8.5g 5	5952 R	99.9 13.4	24:53.33	glanczoshm-dode	
5396	schnack	25 (0 15.6g	8.5g 5	5952 R	99.9 13.4	24:37.46	glanczoshm-dode	
5397	schnack	25 (0 15.6g	8.5g 5	5952 R	99.9 13.4	24:52.95	glanczoshm-dode	
5398	schnack	25 (0 15.6g	8.5g 5	5952 R	99.9 13.4	24:57.60	glanczoshm-dode	
5399	schnack	25 (0 15.6g	8.5g 5	5952 R	99.9 13.4	25:39.64	glanczoshm-dode	
5400	schnack	25 (0 15.6g	8.5g 5	5952 R	99.9 13.4	25:10.02	glanczoshm-dode	
5401	schnack	25 (0 15.6g	8.5g 5	5952 R	99.9 13.4	25:39.93	glanczoshm-dode	
5402	schnack	25 (0 15.6g	8.5g 5	5952 R	99.9 13.4	25:09.29	glanczoshm-dode	4
1	root	15 (0 5184	2880 2	2048 S	0.0 0.0	0:14.44	init	
2	root	RT (0 0	0	0.5	0.0 0.0	0:00.00	migration/0	*

BULL: 4 Itanium dual core, 64 GB RAM

Bielefeld anno 2009

BULL: 16 nodes, 2 INTEL quadcore CPUs/node, 386 GB RAM, vSMP

Garching anno 2012

Supercomputer SuperMUC am Leibniz-Rechenzentrum in Garching: 3 PFLOPS/s, mehr als 150,000 Intel-Prozessor-Cores (Xeon E5)

And now Osnabrück again!

But why HPC?

← ← → → □ ?

You have got a molecule!

S = 60!

Congratulations!

Powell group: npj Quantum Materials 3, 10 (2018)

You want to build a quantum computer!

Very smart!

Wernsdorfer group: Phys. Rev. Lett. **119**, 187702 (2017)

You want to achieve quantum coherence!

Desperately needed!

Friedman group: Phys. Rev. Research 2, 032037(R) (2020)

← ← → → □ ?

You want to deposit your molecule!

Next generation magnetic storage!

Xue group: Phys. Rev. Lett. **101**, 197208 (2008)

← ← → → □ ?

You want molecular magnetocalorics!

Cool!

Brechin group: Angew. Chem. Int. Ed. 51, 4633 (2012)

You have got an idea about the modeling! Heisenberg Zeeman

You have to solve the Schrödinger equation!

$$\underbrace{H}{\approx} | \phi_n \rangle = E_n | \phi_n \rangle$$

Eigenvalues E_n and eigenvectors $|\phi_n\rangle$

- needed for spectroscopy (EPR, INS, NMR);
- needed for thermodynamic functions (magnetization, susceptibility, heat capacity);
- needed for time evolution (pulsed EPR, simulate quantum computing, thermalization).

In the end it's always a big matrix!

Fe^{III}₁₀: $N = 10, s = 5/2, \dim(\mathcal{H}) = (2s + 1)^N$ Dimension=**60,466,176**. Maybe too big?

Can we evaluate the partition function

$$Z(T,B) = \operatorname{tr}\left(\exp\left[-\beta H\right]\right)$$

without diagonalizing the Hamiltonian?

Yes, with magic!

Quantum statistics with HPC (Magic + Power)

Solution I: trace estimators

$$\operatorname{tr}\left(\mathcal{O}\right) \approx \langle r | \mathcal{O} | r \rangle = \sum_{\nu} \langle \nu | \mathcal{O} | \nu \rangle + \sum_{\nu \neq \mu} r_{\nu} r_{\mu} \langle \nu | \mathcal{O} | \mu \rangle$$

$$|r\rangle = \sum_{\nu} r_{\nu} |\nu\rangle, \quad r_{\nu} = \pm 1$$

- $|\nu\rangle$ some orthonormal basis of your choice; not the eigenbasis of Q, since we don't know it.
- $r_{\nu} = \pm 1$ random, equally distributed. Rademacher vectors.
- Amazingly accurate, bigger (Hilbert space dimension) is better.

M. Hutchinson, Communications in Statistics - Simulation and Computation 18, 1059 (1989).

Solution II: Krylov space representation

$$\exp\left[-\beta H\right] \approx \frac{1}{\sim} - \beta H + \frac{\beta^2}{2!} H^2 - \cdots \frac{\beta^{N_L - 1}}{(N_L - 1)!} H^{N_L - 1}$$

applied to a state $|r\rangle$ yields a superposition of

$$\underbrace{\mathbf{1}}_{\sim} | r \rangle, \quad \underbrace{H}_{\sim} | r \rangle, \quad \underbrace{H}_{\sim}^{2} | r \rangle, \quad \ldots \underbrace{H}_{\sim}^{N_{L}-1} | r \rangle.$$

These (linearly independent) vectors span a small space of dimension N_L ; it is called Krylov space.

Let's diagonalize H in this space!

Partition function I: simple approximation

$$Z(T,B) \approx \langle r | e^{-\beta H} | r \rangle \approx \sum_{n=1}^{N_L} e^{-\beta \epsilon_n^{(r)}} |\langle n(r) | r \rangle|^2$$
$$O^{\mathsf{r}}(T,B) \approx \frac{\langle r | Q e^{-\beta H} | r \rangle}{\langle r | e^{-\beta H} | r \rangle} = \frac{\langle r | e^{-\beta H/2} Q e^{-\beta H/2} | r \rangle}{\langle r | e^{-\beta H/2} e^{-\beta H/2} | r \rangle}$$

- Wow!!!
- One can replace a trace involving an intractable operator by an expectation value with respect to just ONE random vector evaluated by means of a Krylov space representation???
- Typicality = any random vector will do: $|r\rangle \equiv (T = \infty)$

J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).

Partition function II: Finite-temperature Lanczos Method

$$Z^{\mathsf{FTLM}}(T,B) \quad \approx \quad \frac{1}{R} \sum_{r=1}^{R} \sum_{n=1}^{N_L} e^{-\beta \epsilon_n^{(r)}} |\langle n(r) | r \rangle|^2$$

- Averaging over *R* random vectors is better.
- $|n(r)\rangle$ n-th Lanczos eigenvector starting from $|r\rangle$.
- Partition function replaced by a small sum: $R = 1 \dots 100, N_L \approx 100$.
- Implemented in spinpack by Jörg Schulenburg (URZ Magdeburg); MPI and openMP parallelized, used up to 3072 nodes.

SPINPACK page: https://www-e.uni-magdeburg.de/jschulen/spin/

Matrix vector operations with HPC I

Matrix vector operations with HPC II

FTLM 1: ferric wheel

(1) J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020).
(2) SU(2) & D₂: R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29, 403 (2010).

(3) SU(2) & C_N: T. Heitmann, J. Schnack, Phys. Rev. B 99, 134405 (2019)

HPC3, go with throttle up!

Information

Molecular Magnetism Web

www.molmag.de

Highlights. Tutorials. Who is who. Conferences.