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small is
beautiful
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small is
beautiful
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à áá à p ? 6 Small 3

Size matters!
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à áá à p ? 6 Small 4

Osnabrück anno 2001

BULL: 4 Itanium dual core, 64 GB RAM
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à áá à p ? 6 Small 4

Bielefeld anno 2009

BULL: 16 nodes, 2 INTEL quadcore CPUs/node, 386 GB RAM, vSMP
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à áá à p ? 6 Small 5

Garching anno 2012

Supercomputer SuperMUC am Leibniz-Rechenzentrum in Garching:
3 PFLOPS/s, mehr als 150,000 Intel-Prozessor-Cores (Xeon E5)
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And now Osnabrück again!
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But why HPC?
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à áá à p ? 6 Problem

You have got a molecule!

S = 60!
Congratulations!

Powell group: npj Quantum Materials 3, 10 (2018)
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à áá à p ? 6 Problem

You want to build a quantum
computer!

Very smart!

Wernsdorfer group: Phys. Rev. Lett. 119, 187702 (2017)
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à áá à p ? 6 Problem

You want to achieve quantum
coherence!

COLLETT, SANTINI, CARRETTA, AND FRIEDMAN PHYSICAL REVIEW RESEARCH 2, 032037(R) (2020)

FIG. 1. Energy level diagram for a single Cr7Mn molecule,
showing the zero field avoided crossing between |m = ±1〉 states,
creating the |±〉 clock states. Solid lines show dependence on a field
along the easy-axis (z) direction. Dashed (dotted) lines correspond
to the dependence on field along the hard (medium) axis. Inset:
molecular structure of Cr7Mn.

enabling single- and two-qubit operations to be implemented
while preserving the immunity of the system to field fluctu-
ations. Recent work on dimers of Ti atoms has shown the
efficacy of clock transitions in reducing decoherence in dimer
systems with exchange coupling [25,26], though that work
involved a single two-state clock transition. In contrast, the
dimers described herein present a manifold of four states
connected by clock transitions, thus providing a two-qubit
system.

An effective Hamiltonian for an isolated S = 1 Cr7Mn
molecule is

Hi = −DiS2
iz + Ei

(
S2

ix − S2
iy

)
+ giµB #Si · #B. (1)

The Di term represents the system’s axial (easy-axis)
anisotropy, while the Ei term corresponds to the trans-
verse anisotropy. Here the subscript i designates a particular
molecule. Such a Hamiltonian can be justified as the low-
energy approximation resulting from an ab initio treatment of
the ring [27,28]. In addition, numerous experimental results
confirm the validity of this effective Hamiltonian at low tem-
peratures [13,29]. We can identify the Szi eigenstates by their
m value: |m = 0〉 ≡ |0〉 and |m = ±1〉 ≡ |±1〉. At zero field,
the energy eigenstates are |0〉 and |±〉 = (|+1〉 ± |−1〉)/

√
2.

The latter two states exhibit an avoided crossing with a “tunnel
splitting” of 2Ei. Figure 1 shows the energy eigenstates for
this system as a function of field applied along the easy (z),
medium (y), and hard (x) axial directions. The figure illus-
trates that the zero-field transition between the two lowest-
energy states is independent to first order to any component
of the magnetic field and thus constitutes an atomic-clock
transition, with a significant transition matrix element for the
Sz operator: 〈+| Sz |−〉 = 1. Through variations in synthesis,
molecules with different values of parameters (Di and Ei) can
be produced; notably the so-called green and purple variants
of Cr7Mn [22].

When coupled together, a pair of molecules with different
parameters form a supramolecular heterodimer [20]. Interac-

tions between the spins in the dimer can be modeled as a
bilinear exchange interaction:

HJ = #S1 · J · #S2 = #S1 · J̃ · #S2 + JzzS1zS2z. (2)

We isolate the Jzz term here (and implicitly define the J̃
tensor) because it is the only term that directly couples any of
the four lowest-energy states to each other. As a consequence,
this term is responsible for an error in the implementation
of single-qubit rotations, as will be discussed below. It is
important to note that molecules within the dimer need not
have any simple relative orientation and, thus, each of the
principal (easy, medium, and hard) axes of the two spins may
have any relative orientation. Thus, the components of J do
not necessarily refer to specific directions in space but to
couplings between different axial directions of each spin; e.g.,
Jxz describes the coupling between the hard-axis component
of spin 1 and the easy-axis component of spin 2.

The total zero-field Hamiltonian for the system is

H = H1 + H2 + HJ. (3)

When the Di are much larger than all the other energy parame-
ters (Ei, Ji j ), the subspace of the four lowest-energy states acts
as a system of two coupled effective S = 1/2 spins. For J̃ =
0 and the realistic case of Ei ' Jzz, the lowest and highest
energy states in the subspace are to a good approximation
|++〉 and |−−〉, with energies E±± = 2(−D̄ ± Ē ), where
D̄ = (D1 + D2)/2 and Ē = (E1 + E2)/2. The two middle-
energy states can be represented as

|↑↓〉 = cos θ |+−〉 + sin θ |−+〉,
|↓↑〉 = − sin θ |+−〉 + cos θ |−+〉, (4)

where tan 2θ = 2Jzz
"E , with energies E↑↓

↓↑
= −2D̄ ±

√
"E2 + J2

zz, respectively, defining "E = E1 − E2. Since
the states are constructed from clock states, near zero field
all four of these states are barely affected by a magnetic
field along any direction, as illustrated for the z component
of field in Fig. 2, unlike real coupled S = 1/2 spins. For
implementation of quantum-computing protocols we use the
energy eigenstates as the logical basis, labeling these with
vertical arrows, e.g., |↑↓〉.

Certain transitions within the four-state manifold are de-
generate, e.g., |++〉 ↔ |↑↓〉 is degenerate with |↓↑〉 ↔
|−−〉. These degeneracies are broken by the J̃ term in
Eq. (2). For simplicity, we consider the case in which J̃ is
diagonal such that

HJ = J⊥(S1xS2x + S1yS2y) + JzzS1zS2z. (5)

(Other forms of J̃ give qualitatively similar results.) To
second order in J⊥, the |++〉 and |−−〉 states become, re-
spectively, the states |↑↑〉 and |↓↓〉:

∣∣↑↑
↓↓

〉
=

(
1 − J2

⊥
2E2

±±

)
|±±〉 + J⊥

E±±
|00〉

± J2
⊥

(E−− − E++)E±±
|∓∓〉 (6)

032037-2

Desperately needed!

Friedman group: Phys. Rev. Research 2, 032037(R) (2020)
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à áá à p ? 6 Problem

You want to deposit your
molecule!

Next generation magnetic storage!

Xue group: Phys. Rev. Lett. 101, 197208 (2008)
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à áá à p ? 6 Problem

You want molecular
magnetocalorics!

Cool!

Brechin group: Angew. Chem. Int. Ed. 51, 4633 (2012)
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à áá à p ? 6 Problem

You have got an idea about the modeling!

‡ ·· ‡ p ? 6 Problem

You have got an idea about the modeling!

Heisenberg Zeeman

H⇠ = �2
X

i<j

Jij~s⇠(i) ·~s⇠(j) + g µB B
NX

i

s⇠z(i)

Jürgen Schnack, Magnetic molecules 7/67
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à áá à p ? 6 Schrödinger equation

You have to solve the Schrödinger equation!

H∼ |φn 〉 = En |φn 〉

Eigenvalues En and eigenvectors |φn 〉

• needed for spectroscopy (EPR, INS, NMR);

• needed for thermodynamic functions (magnetization, susceptibility,
heat capacity);

• needed for time evolution (pulsed EPR, simulate quantum computing,
thermalization).
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à áá à p ? 6 Matrix

In the end it’s always a big matrix!

⇒
(−27.8 3.46 0.18 · · ·

3.46 −2.35 −1.7 · · ·
0.18 −1.7 5.64 · · ·... ... ... · · ·

)
⇒

FeIII
10: N = 10, s = 5/2, dim(H) = (2s+ 1)N

Dimension=60,466,176. Maybe too big?
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à áá à p ? 6 Typicality approach

Can we evaluate the partition function

Z(T,B) = tr
(
exp

[
−βH∼

])

without diagonalizing the Hamiltonian?
Yes, with magic!
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à áá à p ? 6 Quantum statistics

Quantum statistics with HPC
(Magic + Power)
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à áá à p ? 6 Trace estimators

Solution I: trace estimators

tr
(
O∼

)
≈ 〈 r |O∼ | r 〉 =

∑

ν

〈 ν |O∼ | ν 〉+
∑

ν 6=µ

rνrµ〈 ν |O∼ |µ 〉

| r 〉 =
∑

ν

rν | ν 〉 , rν = ±1

• | ν 〉 some orthonormal basis of your choice;
not the eigenbasis of O∼, since we don’t know it.

• rν = ±1 random, equally distributed. Rademacher vectors.

• Amazingly accurate, bigger (Hilbert space dimension) is better.

M. Hutchinson, Communications in Statistics - Simulation and Computation 18, 1059 (1989).
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à áá à p ? 6 Trace estimators

Solution II: Krylov space representation

exp
[
−βH∼

]
≈ 1∼− βH∼ +

β2

2!
H∼

2 − · · · βNL−1

(NL − 1)!
H∼
NL−1

applied to a state | r 〉 yields a superposition of

1∼ | r 〉, H∼ | r 〉, H∼
2 | r 〉, . . . H∼

NL−1 | r 〉 .

These (linearly independent) vectors span a small space of dimension NL;
it is called Krylov space.

Let’s diagonalize H∼ in this space!
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à áá à p ? 6 Trace estimators

Partition function I: simple approximation

Z(T,B) ≈ 〈 r | e−βH∼ | r 〉 ≈
NL∑

n=1

e−βε
(r)
n |〈n(r) | r 〉|2

Or(T,B) ≈
〈 r |O∼e

−βH∼ | r 〉
〈 r | e−βH∼ | r 〉

=
〈 r | e−βH∼/2O∼e

−βH∼/2 | r 〉
〈 r | e−βH∼/2e−βH∼/2 | r 〉

• Wow!!!

• One can replace a trace involving an intractable operator by an expectation value
with respect to just ONE random vector evaluated by means of a Krylov space
representation???

• Typicality = any random vector will do: | r 〉 ≡ (T =∞)

J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).
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à áá à p ? 6 Trace estimators

Partition function II: Finite-temperature Lanczos Method

ZFTLM(T,B) ≈ 1

R

R∑

r=1

NL∑

n=1

e−βε
(r)
n |〈n(r) | r 〉|2

• Averaging over R random vectors is better.

• |n(r) 〉 n-th Lanczos eigenvector starting from | r 〉.

• Partition function replaced by a small sum: R = 1 . . . 100, NL ≈ 100.

• Implemented in spinpack by Jörg Schulenburg (URZ Magdeburg); MPI and
openMP parallelized, used up to 3072 nodes.

SPINPACK page: https://www-e.uni-magdeburg.de/jschulen/spin/
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Matrix vector operations with HPC I
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Matrix vector operations with HPC II
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à áá à p ? 6 FTLM

FTLM 1: ferric wheel

(1) J. Schnack, J. Richter, R. Steinigeweg, Phys. Rev. Research 2, 013186 (2020).

(2) SU(2) & D2: R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29, 403 (2010).

(3) SU(2) & CN : T. Heitmann, J. Schnack, Phys. Rev. B 99, 134405 (2019)
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à áá à p ? 6 Go

HPC3, go with throttle up!
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à áá à p ? 6 Information

Molecular Magnetism Web

www.molmag.de

Highlights. Tutorials. Who is who. Conferences.
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