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➠ ➡➡ ➠ ❐ ? ✖ Problem

The problem
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➠ ➡➡ ➠ ❐ ? ✖ Problem

You have got a molecule!

Congratulations!
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➠ ➡➡ ➠ ❐ ? ✖ Problem

You have got an idea about the modeling!

H∼ =
∑
i,j

~s∼(i) · Jij ·~s∼(j) +
∑
i,j

~Dij ·
[
~s∼(i)×~s∼(j)

]
+ µB

~B

N∑
i

gi~s∼(i)

Exchange/Anisotropy Dzyaloshinskii-Moriya Zeeman
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➠ ➡➡ ➠ ❐ ? ✖ Matrix

In the end it’s always a big matrix!

⇒
(−27.8 3.46 0.18 · · ·

3.46 −2.35 −1.7 · · ·
0.18 −1.7 5.64 · · ·... ... ... · · ·

)
⇒

FeIII
10: N = 10, s = 5/2

Dimension=60,466,176. Maybe too big?
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➠ ➡➡ ➠ ❐ ? ✖ Thank God, we have computers

Thank God, we have computers

“Espresso-doped multi-core”

128 cores, 384 GB RAM

. . . but that’s not enough!
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➠ ➡➡ ➠ ❐ ? ✖ Contents for you today

Contents for you today

Fe10

1. Isotropic case – simple

2. Isotropic case – advanced

3. Anisotropic case – general

4. Single ion anisotropy – examples

5. Thorsten Glaser’s molecules

6. Anisotropic exchange
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➠ ➡➡ ➠ ❐ ? ✖ Complete diagonalization

Isotropic case

Complete diagonalization:

The easy version

Most physicists do this!
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➠ ➡➡ ➠ ❐ ? ✖ Model Hamiltonian

Model Hamiltonian – Heisenberg

H∼ = −2
∑
i<j

Jij ~s∼i ·~s∼j + µB B g

N∑
i

s∼
z
i

Why does the Heisenberg model often yield a very good description of a spin
system?

Reason: Some ions of the iron group have quenched angular momentum 〈 l∼ 〉 ≈ 0
due to chemical binding (ligand field), remaining spin-orbit coupling treated
perturbatively with the help of anisotropy terms or simply neglected. This is
different for most ions in the periodic table, e.g. rare earth ions! But let’s not care
for a moment.

Since the dimension of Hilbert space equals (2s + 1)N the Hamiltonian can be
diagonalized completely for small molecules. For larger ones approximate methods
are used.
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➠ ➡➡ ➠ ❐ ? ✖ Product basis and symmtries

Product basis and symmtries

Product basis, total dimension: dim (H) = (2s + 1)N

s∼
z
u |m1, . . . ,mu, . . . ,mN 〉 = mu |m1, . . . ,mu, . . . ,mN 〉

These states span the Hilbert space and are used to construct symmetry-related
basis states. Use au = su −mu for computation (integer).

Symmetries of the Heisenberg model without anisotropy[
H∼ , ~S∼

2
]

= 0 ,
[
H∼ , S∼z

]
= 0

Additional (point group) symmetries are possible, e.g. shifts on a ring molecule.
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➠ ➡➡ ➠ ❐ ? ✖ Decomposition into mutually orthogonal subspaces

Decomposition into mutually orthogonal subspaces

If
[
H∼ , S∼z

]
= 0, the Hilbert space H can be decomposed into mutually orthogonal

subspaces H(M) (M is the quantum number belonging to S∼z)

[
H∼ , S∼z

]
= 0 : H =

+Smax⊕
M=−Smax

H(M) , Smax = Ns

H(M) containes all states |m1, . . . ,mu, . . . ,mN 〉 with
∑

i mi = M .

The Hamiltonian is diagonalized in all subspaces separately. The dimension of the
largest subspace determines whether a Hamiltonian can diagonalized completely.
If further symmetries apply this dimension will be further reduced.

For practical purposes ~s∼i ·~s∼j = s∼
z
i s∼

z
j + 1

2

[
s∼

+
i s∼

−
j + s∼

−
i s∼

+
j

]
.
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➠ ➡➡ ➠ ❐ ? ✖ Example: spin ring with N = 6, s = 1/2

Example: spin ring with N = 6, s = 1/2

• Total dimension of H: Dim(H) = (2× 1/2 + 1)6 = 64;

• M = 3: |Ω 〉 = |+ + + + ++ 〉; Dim(H(M)) = 1;

• M = 2: | −+ + + ++ 〉 and cyclic shifts; Dim(H(M)) = 6;

• M = 1: | − −+ + ++ 〉, | −+−+ ++ 〉, | −+ +−++ 〉 and cyclic shifts;
Dim(H(M)) = 15;

• M = 0: | − − −+ ++ 〉, | − −+−++ 〉, | −+−−++ 〉, | −+−+−+ 〉
and cyclic shifts; Dim(H(M)) = 20;

• Dimensional check: 64 = 1 + 6 + 15 + 20 + 15 + 6 + 1
√

• Inclusion of translational symmetry leads to orthogonal subspaces H(M,k) with
k = 0, . . . , 5. Then the largest dimension is 4.
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➠ ➡➡ ➠ ❐ ? ✖ Exact diagonalization

Exact diagonalization

• Numerically exact diagonalization feasible up to RAM size;

• Example: 10,000x10,000 complex*16, 1.6 GB RAM needed;

• Not much we can do at this point, wait for more RAM
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➠ ➡➡ ➠ ❐ ? ✖ Complete diagonalization

Isotropic case

Complete diagonalization:

SU(2) & point group symmetry

Quantum chemists need to be much smarter since they have smaller computers!

(1) D. Gatteschi and L. Pardi, Gazz. Chim. Ital. 123, 231 (1993).
(2) J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, and B. S. Tsukerblat, Inorg. Chem. 38, 6081 (1999).
(3) B. S. Tsukerblat, Group theory in chemistry and spectroscopy: a simple guide to advanced usage, 2nd ed. (Dover
Publications, Mineola, New York, 2006).
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➠ ➡➡ ➠ ❐ ? ✖ Irreducible Tensor Operator approach

Irreducible Tensor Operator approach

Spin rotational symmetry SU(2):

• H∼ = −2
∑

i<j Jij ~s∼i · ~s∼j + gµB
~S∼ ·

~B ;

• Physicists employ:
[
H∼ , S∼z

]
= 0;

• Chemists employ:
[
H∼ , ~S∼

2
]

= 0,
[
H∼ , S∼z

]
= 0;

Irreducible Tensor Operator (ITO) approach;
Free program MAGPACK (2) available.

(1) D. Gatteschi and L. Pardi, Gazz. Chim. Ital. 123, 231 (1993).
(2) J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, and B. S. Tsukerblat, Inorg. Chem. 38, 6081 (1999).
(3) B. S. Tsukerblat, Group theory in chemistry and spectroscopy: a simple guide to advanced usage, 2nd ed. (Dover
Publications, Mineola, New York, 2006).
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➠ ➡➡ ➠ ❐ ? ✖ Idea of ITO

Idea of ITO

H∼Heisenberg = −2
∑
i<j

Jij ~s∼i · ~s∼j

= 2
√

3
∑
i<j

Jij T∼
(0)({ki}, {ki}|ki = kj = 1)

Irreducible Tensor Operator approach

• Express spin operators and functions thereof as ITOs;

• Use vector coupling basis |α S M 〉 and recursive recoupling.

(1) Gatteschi, Tsukerblat, Coronado, Waldmann, . . .
(2) R. Schnalle, Ph.D. thesis, Osnabrück University (2009)
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➠ ➡➡ ➠ ❐ ? ✖ Point Group Symmetry

Point Group Symmetry

|α′ S M Γ 〉 = P(Γ) |α S M 〉 =

(
lΓ
h

∑
R

(
χ(Γ)(R)

)∗
G∼(R)

)
|α S M 〉

Method:

• Projection onto irreducible representations Γ of the point group (1,2);

• No free program, things are a bit complicated (3,4).

(1) M. Tinkham, Group Theory and Quantum Mechanics, Dover.
(2) D. Gatteschi and L. Pardi, Gazz. Chim. Ital. 123, 231 (1993).
(3) O. Waldmann, Phys. Rev. B 61, 6138 (2000).
(4) R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29, 403-452 (2010) ⇐ contains EVERYTHING.
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➠ ➡➡ ➠ ❐ ? ✖ Decomposition of Hamiltonian Matrix

Decomposition of Hamiltonian Matrix

M

M

M

Γ

Γ

Γ

1
1

1
2

2
2

0 0 0

000

0 0 0

0 0 0

M
Γ1

2

Block diagonal due to symmetry-adapted basis.
Only separate blocks need to be diagonalized.
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➠ ➡➡ ➠ ❐ ? ✖ Complete diagonalization

Example: Fe 10

Spin ring, N = 10, s = 5/2, Hilbert space dimension 60,466,176; symmetry D2 (1).

(1) R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29, 403-452 (2010).
(2) C. Delfs et al., Inorg. Chem. 32, 3099 (1993).
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➠ ➡➡ ➠ ❐ ? ✖ Point Group Symmetry V

Example: Icosahedron

s=1 (!!!)

s=3/2 (D2)

Icosahedron, s = 3/2, Hilbert space dimension 16,777,216; symmetry Ih;
Evaluation of recoupling coefficients for s = 3/2 in Ih practically impossible (1).

(1) R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29, 403-452 (2010).
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➠ ➡➡ ➠ ❐ ? ✖ Anisotropic Hamiltonian

Anisotropic Hamiltonians
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➠ ➡➡ ➠ ❐ ? ✖ Model Hamiltonian

Model Hamiltonian

H∼ =
∑
i,j

~s∼(i) · Jij ·~s∼(j) +
∑
i,j

~Dij ·
[
~s∼(i)×~s∼(j)

]
+ µB

~B
N∑
i

gi~s∼(i)

Exchange/Anisotropy Dzyaloshinskii-Moriya Zeeman

1. Addresses many anisotropic contributions (up to bilinear/quadratic order)

2. Other terms, e.g. biquadratic ?

3. Works with spin degrees of freedom

4. Sufficiently general? Strong ls-coupling? Replace ~s∼(i) by ~j
∼
(i)?

5. Many open parameters – accurate and detailed magnetic observables needed:
low-T magnetization, EPR, INS. Forget χT !
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➠ ➡➡ ➠ ❐ ? ✖ Anisotropic magnetic molecules

Anisotropic magnetic molecules – Theory

H∼ = H∼ (~B)

•
[
H∼ , ~S∼

2
]
6= 0,

[
H∼ , ~S∼z

]
6= 0; ⇒⇒⇒ MAGPACK does NOT work.

• You have to diagonalize H∼ (~B) for every field (direction and strength)!
⇒ Orientational average for powder samples.

• Point group symmetries reduce to inversion (at most) in the presence of a mag-
netic field.

• Easy: dim(H) < 30, 000; possible: 30, 000 < dim(H) < 140, 000

T. Glaser et al. et J. Schnack, Inorg. Chem. 48, 607 (2009).
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➠ ➡➡ ➠ ❐ ? ✖ Anisotropic magnetic molecules

Anisotropic magnetic molecules – simpler Hamiltonian

H∼ (~B) = −2
∑
i<j

Jij~s∼(i) ·~s∼(j) +
∑

i

di

(
~ei ·~s∼(i)

)2 + µB
~B ·

N∑
i

gi ~s∼(i)

• ~ei direction of major anisotropy axis at site i;

• di strength of anisotropy along major axis at site i;

• Use of eigenvectors to evaluate observables.

• Alternative: use difference quotient.
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➠ ➡➡ ➠ ❐ ? ✖ Anisotropic magnetic molecules

Strong exchange limit

-6 -4 -2 2 4 6 M

-20

-10

10

E�HkBKL
-6 -4 -2 2 4 6 M

-20

-10

10

E�HkBKL

• Heisenberg, i.e. exchange, term dominant; uniaxial sigle-ion anisotropy in this
example;

• ⇒ zero-field split multiplets.
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➠ ➡➡ ➠ ❐ ? ✖ Anisotropic magnetic molecules

Weak exchange limit

-6 -4 -2 2 4 6 M
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-10
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-80

-60

-40
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• (Single ion) anisotopy term dominant;

• ⇒ no multiplets at all; nesting; mixing.
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➠ ➡➡ ➠ ❐ ? ✖ Systematic study of a trimer

Systematic study of a trimer

C3
ie 

J 

Anisotropic trimer

• Ions with s = 1; C3 symmetry;

• 1 exchange interaction;

• Local anisotropy axis with azimuthal angle ϑ.

• Powder average.

J. Schnack, Condens. Matter Phys. 12 (2009) 323-330
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➠ ➡➡ ➠ ❐ ? ✖ Strong coupling

Strong coupling
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➠ ➡➡ ➠ ❐ ? ✖ Intermediate coupling

Intermediate coupling

unilogo-m-rot.jpg Jürgen Schnack, Evaluation of anisotropic spin Hamiltonians 28/60



➠ ➡➡ ➠ ❐ ? ✖ Weak coupling

Weak coupling
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➠ ➡➡ ➠ ❐ ? ✖ Anisotropic Molecules

Single-ion anisotropy – examples
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➠ ➡➡ ➠ ❐ ? ✖ Anisotropic magnetic molecules

Anisotropic magnetic molecules – simpler Hamiltonian

H∼ (~B) = −2
∑
i<j

Jij~s∼(i) ·~s∼(j) +
∑

i

di

(
~ei ·~s∼(i)

)2 + µB
~B ·

N∑
i

gi ~s∼(i)

• ~ei direction of major anisotropy axis at site i;

• di strength of anisotropy along major axis at site i;

• Use of eigenvectors to evaluate observables.

• Alternative: use difference quotient.

unilogo-m-rot.jpg Jürgen Schnack, Evaluation of anisotropic spin Hamiltonians 31/60



➠ ➡➡ ➠ ❐ ? ✖ Anisotropic magnetic molecules

Anisotropic magnetic molecules – Mn 3Cr

Mn

Mn
Mn

C3

eCr

What can be achieved? Mn 3Cr:

• Two couplings: J1 to central Cr, J2 between Mn;
Mn: s=5/2, g=2.0; Cr: s=3/2, g=1.95

• Model Mn anisotropy by local axis~e(ϑ, φ).
Due to C3 symmetry ϑMn1 = ϑMn2 = ϑMn3.
Only relative φ = 120◦ determined.

• Model Cr anisotropy by local axis~e(ϑ, φ).
Due to C3 symmetry ϑCr = 0, φCr = 0.

• Result: J1 = −0.29 cm−1, J2 = −0.08 cm−1,
dMn = −1.21 cm−1, ϑMn = 22◦, dCr = +0.17 cm−1.

• ab initio calculations needed.
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➠ ➡➡ ➠ ❐ ? ✖ Anisotropic magnetic molecules

Anisotropic magnetic molecules – Mn 3Cr

Manuel Prinz, Karsten Kuepper, Christian Taubitz, Michael Raekers, Sumit Khanra, Biplab Biswas, Thomas
Weyhermüller, Marc Uhlarz, Joachim Wosnitza, Jürgen Schnack, Andrei V. Postnikov, Christian Schröder, Simon J.
George, Manfred Neumann, and Phalguni Chaudhuri, Inorg. Chem. 49 (2010) 2093
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➠ ➡➡ ➠ ❐ ? ✖ Mn3Cr III

Mn3Cr III – Angular averaging

For a good fit you need several directions, at least 10.

V. I. Lebedev and D. N. Laikov, Dokl. Akad. Nauk 366, 741 (1999); and link to program on www.molmag.de
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➠ ➡➡ ➠ ❐ ? ✖ V4 I

V4 I

C3

eJ

J
V

1

2

[VIII
4 Cl6(thme) 2(bipy) 3]

• 4 VIII
4 ions with s = 1; approximate C3 symmetry;

• 2 exchange interactions;

• Central V: axial anisotropy;

• Outer Vs: local anisotropy axis with azimuthal
angle ϑ.

• Powder average.

Ian S. Tidmarsh, Luke J. Batchelor, Emma Scales, Rebecca H. Laye,
Lorenzo Sorace, Andrea Caneschi, Jürgen Schnack and Eric J.L.
McInnes, Dalton Trans. (2009) 9402-9409
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➠ ➡➡ ➠ ❐ ? ✖ V4 II

V4 II

Two equally good parameter sets.
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➠ ➡➡ ➠ ❐ ? ✖ V4 III

V4 III

High fields could distinguish.
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➠ ➡➡ ➠ ❐ ? ✖ V4 IV

V4 IV

Accuracy of measurement limits modeling.
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➠ ➡➡ ➠ ❐ ? ✖ V4 V

V4 – Anisotropy tensors

Cartoon of anisotropy tensors.
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➠ ➡➡ ➠ ❐ ? ✖ Glaser

Thorsten Glaser’s molecules
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➠ ➡➡ ➠ ❐ ? ✖ Single Molecule Magnets I

Single Molecule Magnets I

• Magnetic Molecules may possess a large ground
state spin, e.g. S = 10 for Mn12 or Fe8;

• Ground state spin can be stabilized by anisotropy
(easy axis).
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➠ ➡➡ ➠ ❐ ? ✖ Single Molecule Magnets II

Single Molecule Magnets II

Energy

Orientation

Anisotropy
barrier

Magnetization

Field

• Single Molecule Magnets (SMM):
large ground state moment;
anisotropy barrier dominates at low T .

H∼ ≈ DS2
z

• Metastable magnetization and hysteresis;

• But also magnetization tunneling due to non-
commuting terms, e.g. E, Bx, By.

H∼ ≈ DS2
z + E(S2

x − S2
y)
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➠ ➡➡ ➠ ❐ ? ✖ Thorsten Glaser’s molecules

Thorsten Glaser’s molecules

Rational design of strict C3 symmetry:

• Idea of Thorsten Glaser (Bielefeld):
C3 symmetric alignment of local easy axes
(easy axis ≡ Jahn-Teller axis);

• Various ions could be used so far,
e.g. Mn6Cr (1), Mn6Fe (2), . . .

• Advantage: no E-terms, i.e. no (less) tunneling;

• Problem: exchange interaction sometimes
antiferromagnetic.

T. Glaser et al., Angew. Chem.-Int. Edit. 45, 6033 (2006).
T. Glaser et al., Inorg. Chem. 48, 607 (2009).
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➠ ➡➡ ➠ ❐ ? ✖ Thorsten Glaser’s molecules

Thorsten Glaser’s molecules – Mn 6Cr
ground state St and some source of magnetic anisotropy, but
also a control of the molecular topology.
In order to meet these requirements, we have designed the

C3 symmetric ligand system triplesalen, which combines the
phloroglucinol bridging unit for high-spin ground states St by
the spin-polarization mechanism68−72 with a salen-like ligand
environment for single-site magnetic anisotropies Di by a strong
tetragonal ligand field.72−76 The C3 symmetry of the ligand
should result in C3 symmetric complexes which have, by
symmetry, a rhombicity of ESt = 0. The trinuclear complexes of
the triplesalen ligand [(talent‑Bu2)Mt

3]
m+ (shown in Chart 1 for

Mt = MnIII (A)) are indeed C3 symmetric and exhibit a bowl-
shaped molecular structure74,77 which preorganizes the axial
coordination sites of the metal-salen subunits for the com-
plementary binding of three facial nitrogen atoms of a
hexacyanometallate (B for Mc = CrIII). Hence, the ligand
folding allows for the targeted construction of heptanuclear
complexes [Mt

6M
c]n+ (= [{(talent‑Bu2)Mt

3}2{M
c(CN)6}]

n+)
from two trinuclear triplesalen building blocks and one hexa-
cyanometallate by relying on the concepts of supramolecular
chemistry,78−80 i.e. the molecular recognition of three
preorganized and complementary molecular building blocks
provides the driving force for their association to a heptanuclear
complex, in analogy to the key-and-lock principle. Importantly,
this modular approach allows the fine-tuning of steric and
electronic properties of the individual building blocks without
losing the driving force for the assembly of the entire entity.
The success of our design concept was confirmed by the

formation and the structural and magnetic properties of
[MnIII6Cr

III]3+,81 which is indeed an SMM. The molecule is
approximately C3 symmetric, and the magnetic data indicate a
ferrimagnetic coupling scheme resulting in an St =

21/2 spin
ground state with a sizable magnetic anisotropy DSt. The SMM
nature of [MnIII6Cr

III]3+ as indicated by a nonzero out-of-phase

component of the AC susceptibility was confirmed by a
hysteresis of the magnetization in single-crystal measurements.
The general applicability of the supramolecular approach for

the construction of heptanuclear complexes of the [Mt
6M

c]n+

type was demonstrated by our successful synthesis of the
isostructural series [MnIII6Fe

III]3+,82 [MnIII6Co
III]3+,83 and

[MnIII6MnIII]3+,84 indicating a high stability of the [Mt
6M

c]n+

complex. A detailed comparison of [MnIII6Cr
III]3+ with the

related tetranuclear complex [MnIII3Cr
III]3+ (= [{(talent‑Bu2)-

MnIII3}{(Me3tacn)Cr
III(CN)3}]

3+)85 identified van der Waals-
type contacts between the two trinuclear triplesalen building
blocks in [Mt

6M
c]n+ as the main source of its strong driving

force for formation and its high stability.
While this design approach does allow the fine-tuning of

steric and electronic properties of the individual building blocks
of [Mt

6M
c]n+, e.g., by incorporating different metal ions or

varying the substituents on the ligand backbone, it does not
permit a predetermination or targeted variation of structural
parameters such as bond distances and angles, ligand folding,
the extent of Jahn−Teller distortions, or the exact molecular
symmetry in the solid state. Furthermore, aspects of the crystal
structure such as the overall crystal symmetry, the packing and
relative orientation of the individual SMM complexes in the
crystal, the presence or absence of (weak) intermolecular
interactions between the complexes, or the nature and number
of solvent molecules of crystallization and their arrangement
relative to the SMM complexes within the crystal structure, are
difficult to control. However, such rather slight modifications of
the molecular environment were shown to have a strong impact
on the SMM properties of Mn12

17−26,86−95 and other families
of SMMs.37,96−106

In an attempt to systematically evaluate the influence of
environmental changes on SMM behavior, we have taken
advantage of the high stability of the [MnIII6Cr

III]3+ complex to
synthesize and structurally and magnetically characterize a
series of [MnIII6Cr

III]3+ SMMs differing in the counterion and/
or the solvent molecules of crystallization (see Chart 1). The
use of [CrIII(CN)6]

3‑ as counterion led to the isolation of a
zero-dimensional (0D) [MnIII6Cr

III][CrIII(CN)6] compound
(1) as well as a one-dimensional (1D) [MnIII6Cr

III](μ2-[Cr
III-

(CN)6]) chain compound (2). In order to enforce a high
crystal symmetry by rod packing, we employed the rod-shaped
anion lactate (= lac), which resulted in the crystallization of
[MnIII6Cr

III](lac)3 (3) in the highly symmetric space group R3 ̅
with the molecular S6 axes of the [MnIII6Cr

III]3+ complexes all
aligned with the c-axis of the unit cell. Furthermore, we suc-
ceeded in crystallizing two more solvates of [MnIII6Cr

III](BPh4)3
from acetonitrile (4) and acetone (5), in addition to our first-
reported81 [MnIII6Cr

III](BPh4)3 SMM obtained from acetonitrile/
ether (6). All compounds are rigorously characterized structurally,
spectroscopically, and magnetically by DC and AC measurements.
The magnetic properties are analyzed by the full anisotropic
spin-Hamiltonian to extract the exchange coupling constants
(Ji) and the local zero-field splittings (Di). This analysis is sup-
ported by density functional theory (DFT) calculations. The
series of [MnIII6Cr

III]3+ compounds 1−6 allows a detailed inves-
tigation of the influence of a variety of environmental factors on
the SMM properties, which we report herein.

■ EXPERIMENTAL SECTION
Preparation of Compounds. H6talen

t‑Bu2 {= 2,4,6-tris{1-[2-(3,5-
di-tert-butylsalicylaldimino)-2-methylpropylimino]-ethyl}-1,3,5-trihy-
droxybenzene} was synthesized as described previously.77,107 Filter

Chart 1
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data to eq 5. The resulting values of Ueff and τ0 for the various
samples of 4−6 are summarized in Table 4. Note that the
values obtained for 6c (especially Ueff) are in good agree-
ment with the previously reported values obtained from
χ″M vs T data of a vacuum-dried sample of 6 (Ueff = 25.4 K,
τ0 = 8 × 10−10 s).81

To complete the analysis of the χAC vs T data, we evaluated
the parameter F introduced by Mydosh (eq 6),179 which allows
one to distinguish between spin glasses and other systems
exhibiting a frequency dependence in χAC:

ν
ν= Δ

ΔF
T

T
( )

(log )
m

f (6)

Here, ΔTm(ν) represents the shift of the temperature coordi-
nate Tm(ν) of the maximum in the χ′M vs T plot with varying
frequency ν, and Tf = limν→0 Tm(ν).

180 For spin glasses, Tf is
the phase-transition temperature obtained from DC measure-
ments. For other systems such as single-molecule magnets
exhibiting a frequency-dependent AC signal, but no phase
transition, Tf cannot be accurately determined, which limits the
applicability of the parameter F to such systems.181 However, F
has been frequently estimated for SMMs by using an
approximate Tf value determined from the maximum in the
χ′M vs T curve corresponding to the lowest operating fre-
quency. In this respect, F-values between 0.18 and 0.24 were
calculated for the various samples of 4−6, which clearly rule out
a spin-glass nature of these samples, as typical F-values of spin
glasses are one or two decades lower.179

In addition to analyzing the temperature dependence of the
AC susceptibility at constant frequencies, we investigated its
frequency dependence at fixed temperatures. Figure S25 in the
Supporting Information, Figure 12, and Figure 13 exhibit the
χ′M vs ω, χ″M vs ω, and χ″M vs χ′M plots, respectively, that
were constructed from AC susceptibility measurements on the
different samples of 4−6 at 1.83, 1.90, 2.00, and 2.10 K in
the 0.1−1500 Hz range with the frequency equidistantly
sampled on a logarithmic scale. These experimental data are in
good agreement with the χAC vs T data of the various samples
of 4−6 (vide supra) with respect to the number of different
species in each sample and their variation with changing crys-
tallinity. In most cases, the AC data at constant temperatures

could be fitted to a generalized Debye model describing a
single relaxation process with a distribution of relaxation
times (the fits are represented as lines in Figure S25 in the
Supporting Information, Figure 12, and Figure 13; details of
the model, the fitting procedure, and the extracted parameters
are provided in the Supporting Information).4,182 The Ueff, τ0,
and α values obtained from these fittings are summarized in
Table 4. For some samples, table entries are missing, because a
description of the experimental data by a single relaxation
process was not possible. In the case of 5a and 6a, for which all
AC data indicate the presence of at least two relaxation
processes with significantly different average relaxation times, a
fit to a sum of Debye terms could not be performed, because
the relaxation process on the higher-frequency side is
insufficiently defined, due to the upper frequency limit (1500
Hz) of the SQUID. The samples for which a fitting to a single
relaxation process was possible exhibit α values in the 0.3−0.5
range, indicating a more or less broad distribution of relaxation

Table 3. Parameter Ranges of JMn−Mn, JCr−Mn, and DMn
Determined for 1a, 3a−6a, and 3c−6c By Simulations of
Their μeff vs T and/or VTVH Dataa

sample JMn−Mn
b [cm−1] JCr−Mn

b [cm−1] DMn
c [cm−1]

1a −1.00 ± 0.30 −2.40 ± 0.50 −4.00 ± 0.50
3a −0.85 ± 0.30 −3.00 ± 0.50 −3.00 ± 0.50
3c −0.85 ± 0.30 −3.00 ± 0.50 −3.00 ± 0.50
4ad −0.70 ± 0.30 −4.50 ± 0.50 -
4c −0.70 ± 0.30 −4.50 ± 0.50 −3.50 ± 0.50
5ad −0.70 ± 0.30 −5.00 ± 0.50 -
5c −0.70 ± 0.30 −4.50 ± 0.50 −3.50 ± 0.50
6ad −0.70 ± 0.30 −4.00 ± 0.50 -
6c −0.70 ± 0.30 −5.00 ± 0.50 −3.00 ± 0.50

aThe simulations were performed by a full-matrix diagonalization of
the complete spin-Hamiltonian using the coupling scheme in Figure 9a.
bGenerally determined by simulations of the experimental μeff vs T and
VTVH data. cDetermined by simulations of the experimental VTVH
data. dNo satisfactory reproduction of the experimental VTVH data,
especially of the unusually high magnetization values of the 1 T isofield
line, was possible assuming reasonable values for DMn and DCr.

Figure 11. (a) Temperature dependence of μeff at 1 T and (b) VTVH
magnetization measurements at 1 T (blue), 3 T (green), and 7 T (red)
for 4c−6c. Experimental data are given as symbols; the lines
correspond to simulations performed by a full-matrix diagonalization
of the complete spin-Hamiltonian using the coupling scheme in
Figure 9a and the parameter sets provided in Table 3 for 4c−6c. For a
better appraisal of the estimated accuracy of the parameter values, an
extended version of this figure, including a larger number of
simulations, is provided in the Supporting Information (Figure S17).
In addition, the Brillouin function is shown in panel b for S = 21/2,
g = 1.98.
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data to eq 5. The resulting values of Ueff and τ0 for the various
samples of 4−6 are summarized in Table 4. Note that the
values obtained for 6c (especially Ueff) are in good agree-
ment with the previously reported values obtained from
χ″M vs T data of a vacuum-dried sample of 6 (Ueff = 25.4 K,
τ0 = 8 × 10−10 s).81

To complete the analysis of the χAC vs T data, we evaluated
the parameter F introduced by Mydosh (eq 6),179 which allows
one to distinguish between spin glasses and other systems
exhibiting a frequency dependence in χAC:

ν
ν= Δ

ΔF
T

T
( )

(log )
m

f (6)

Here, ΔTm(ν) represents the shift of the temperature coordi-
nate Tm(ν) of the maximum in the χ′M vs T plot with varying
frequency ν, and Tf = limν→0 Tm(ν).

180 For spin glasses, Tf is
the phase-transition temperature obtained from DC measure-
ments. For other systems such as single-molecule magnets
exhibiting a frequency-dependent AC signal, but no phase
transition, Tf cannot be accurately determined, which limits the
applicability of the parameter F to such systems.181 However, F
has been frequently estimated for SMMs by using an
approximate Tf value determined from the maximum in the
χ′M vs T curve corresponding to the lowest operating fre-
quency. In this respect, F-values between 0.18 and 0.24 were
calculated for the various samples of 4−6, which clearly rule out
a spin-glass nature of these samples, as typical F-values of spin
glasses are one or two decades lower.179

In addition to analyzing the temperature dependence of the
AC susceptibility at constant frequencies, we investigated its
frequency dependence at fixed temperatures. Figure S25 in the
Supporting Information, Figure 12, and Figure 13 exhibit the
χ′M vs ω, χ″M vs ω, and χ″M vs χ′M plots, respectively, that
were constructed from AC susceptibility measurements on the
different samples of 4−6 at 1.83, 1.90, 2.00, and 2.10 K in
the 0.1−1500 Hz range with the frequency equidistantly
sampled on a logarithmic scale. These experimental data are in
good agreement with the χAC vs T data of the various samples
of 4−6 (vide supra) with respect to the number of different
species in each sample and their variation with changing crys-
tallinity. In most cases, the AC data at constant temperatures

could be fitted to a generalized Debye model describing a
single relaxation process with a distribution of relaxation
times (the fits are represented as lines in Figure S25 in the
Supporting Information, Figure 12, and Figure 13; details of
the model, the fitting procedure, and the extracted parameters
are provided in the Supporting Information).4,182 The Ueff, τ0,
and α values obtained from these fittings are summarized in
Table 4. For some samples, table entries are missing, because a
description of the experimental data by a single relaxation
process was not possible. In the case of 5a and 6a, for which all
AC data indicate the presence of at least two relaxation
processes with significantly different average relaxation times, a
fit to a sum of Debye terms could not be performed, because
the relaxation process on the higher-frequency side is
insufficiently defined, due to the upper frequency limit (1500
Hz) of the SQUID. The samples for which a fitting to a single
relaxation process was possible exhibit α values in the 0.3−0.5
range, indicating a more or less broad distribution of relaxation

Table 3. Parameter Ranges of JMn−Mn, JCr−Mn, and DMn
Determined for 1a, 3a−6a, and 3c−6c By Simulations of
Their μeff vs T and/or VTVH Dataa

sample JMn−Mn
b [cm−1] JCr−Mn

b [cm−1] DMn
c [cm−1]

1a −1.00 ± 0.30 −2.40 ± 0.50 −4.00 ± 0.50
3a −0.85 ± 0.30 −3.00 ± 0.50 −3.00 ± 0.50
3c −0.85 ± 0.30 −3.00 ± 0.50 −3.00 ± 0.50
4ad −0.70 ± 0.30 −4.50 ± 0.50 -
4c −0.70 ± 0.30 −4.50 ± 0.50 −3.50 ± 0.50
5ad −0.70 ± 0.30 −5.00 ± 0.50 -
5c −0.70 ± 0.30 −4.50 ± 0.50 −3.50 ± 0.50
6ad −0.70 ± 0.30 −4.00 ± 0.50 -
6c −0.70 ± 0.30 −5.00 ± 0.50 −3.00 ± 0.50

aThe simulations were performed by a full-matrix diagonalization of
the complete spin-Hamiltonian using the coupling scheme in Figure 9a.
bGenerally determined by simulations of the experimental μeff vs T and
VTVH data. cDetermined by simulations of the experimental VTVH
data. dNo satisfactory reproduction of the experimental VTVH data,
especially of the unusually high magnetization values of the 1 T isofield
line, was possible assuming reasonable values for DMn and DCr.

Figure 11. (a) Temperature dependence of μeff at 1 T and (b) VTVH
magnetization measurements at 1 T (blue), 3 T (green), and 7 T (red)
for 4c−6c. Experimental data are given as symbols; the lines
correspond to simulations performed by a full-matrix diagonalization
of the complete spin-Hamiltonian using the coupling scheme in
Figure 9a and the parameter sets provided in Table 3 for 4c−6c. For a
better appraisal of the estimated accuracy of the parameter values, an
extended version of this figure, including a larger number of
simulations, is provided in the Supporting Information (Figure S17).
In addition, the Brillouin function is shown in panel b for S = 21/2,
g = 1.98.
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• Dimension of Hilbert space: 62,500; inversion symmetry apllied.

• Ferrimagnetic alignment due to antiferromagnetic exchange.

Veronika Hoeke, Maik Heidemeier, Erich Krickemeyer, Anja Stammler, Hartmut Bögge, Jürgen Schnack, Andrei
Postnikov, Thorsten Glaser, Inorg. Chem. 51 (2012) 10929-10954
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➠ ➡➡ ➠ ❐ ? ✖ Thorsten Glaser’s molecules

Thorsten Glaser’s molecules – Mn 6Mn

the width of the minima of the c2 function in the parameter

space. Simulations assuming no interaction via the central MnIII

l.s. (J(2,cis)Mn!Mn ¼ J(2,trans)Mn!Mn ¼ 0 cm!1) also reproduce the experi-

mental data qualitatively (Fig. 11), but yield larger c2 deviations.

The temperature-dependence of meff for 1 is well approximated

by parameter sets A and B at low and high temperatures

(Fig. 12a). At intermediate temperatures of 25–75 K, deviations

are visible. We conjecture that these deviations arise from the

thermal population of the excited magnetic levels of the central

MnIII l.s.

The shallow dip in the M vs. B curve of 1 at 1.8 K is approx-

imately reproduced by parameter set B, while no such feature

appears in the simulation with parameter set A (Fig. 12b). This

indicates that the coupling of the trinuclear triplesalen subunits

via the central MnIII l.s. is more likely slightly ferromagnetic

(parameter set B) than antiferromagnetic (parameter set A).

In the limit of strong exchange (J [ D), these coupling

constants can explain the spin ground state St,1 ¼ 4 and field-

induced ground state St,2 ¼ 12. The antiferromagnetic exchange

interaction in the trinuclear MnIII3 triplesalen subunits (J(1)Mn!Mn)

results in intermediate S123* ¼ S456* ¼ 2 spins (Fig. 8), which are

coupled to an St,1 ¼ 4 spin ground state of the whole molecule by

the weak ferromagnetic exchange interaction across the central

diamagnetic MnIII (J(2)Mn!Mn). The Zeeman energy at z 3.4 T is

sufficient to overcome the antiferromagnetic exchange and the

anisotropy energy in the trinuclear subunits so that all spins are

aligned parallel resulting in the new St,2 ¼ 12 spin ground state.

However, the obtained parameters clearly establish that

[MnIII6MnIII]3+ is in the limit of weak exchange (J # D).

In order todiscuss the consequences on themagnetization curve

of [MnIII6MnIII]3+, it is instructive to first look at a triangular

subunit as given byone of the caps.As these units aremagnetically

only weakly coupled via the central MnIII l.s., the magnetism of

[MnIII6MnIII]3+ is to a large extent dominated by their properties.

Fig. 8 Coupling scheme illustrating the St ¼ 4 spin ground state of

[MnIII6MnIII]3+.

Fig. 9 Simulations of the VTVH data of 1 performed by a full-matrix

diagonalization of the complete spin-Hamiltonian using parameter set A

(red lines) except for the variation of J(1)Mn!Mn (top left panel), J(2,cis)Mn!Mn

(top right panel), J(2,trans)Mn!Mn (bottom left panel) of the order of +/!0.05

cm!1, or DMn (bottom right panel) of the order of +/!0.5 cm!1.

Fig. 10 Simulations of the VTVH data of 1 performed by a full-matrix

diagonalization of the complete spin-Hamiltonian using parameter set B

(red lines) except for the variation of J(1)Mn!Mn (top left panel), J(2,cis)Mn!Mn

(top right panel), J(2,trans)Mn!Mn (bottom left panel) of the order of +/!0.05

cm!1, or DMn (bottom right panel) of the order of +/!0.5 cm!1.

Fig. 11 Simulations of the VTVH data of 1 performed by a full-matrix

diagonalization of the complete spin-Hamiltonian using parameter sets A

(left panel, red lines) and B (right panel, red lines) and a variation of each

set assuming no interaction via the central MnIII l.s. (J(2,cis)Mn!Mn ¼
J(2,trans)Mn!Mn ¼ 0 cm!1, green lines).

This journal is ª The Royal Society of Chemistry 2012 Chem. Sci., 2012, 3, 2868–2882 | 2875

aligned antiparallel to its local easy-axis compared to one which

is canted. Also, the total change of the magnetization according

to the spin flips is twice as high in the case of the 40! canted field

direction. This is because after the spin flips these spins are fully

aligned parallel to their anisotropy axis and to the field direction.

In the case of the field applied in the direction of the molecular S6

axis a canting of the flipped spins remains due to the misalign-

ment of the external field direction and the anisotropy axes. Note

that even after all spins are flipped in the field direction the

system is still not fully saturated. This is due to the fact that

although the Zeeman energy is much larger than the exchange

interactions between all spins, the anisotropy energy is still

dominant and prevents the spins from full alignment with the

external field. In the hysteresis curve this shows up as a slow

increase of the magnetization with increasing field after the spin

flip. Note that the spin flip fields of our simulations are slightly

larger than the experimentally determined fields at which the

magnetization jumps occur (see Fig. 15). This is due to the fact

that our simulations are carried out at T ¼ 0 K. At finite

temperatures thermal fluctuations enhance the probability of a

spin flip even in lower magnetic fields. In order to visualize the

spin-state switching we have prepared movies of our field-

dependent classical spin dynamics studies, which can be found in

the ESI.† We have also performed finite temperature classical

Monte Carlo and spin dynamics simulations which qualitatively

show the same results as our exact quantum calculations. We

therefore conclude that the steps in the hysteresis are due to the

spin-state switching caused by the strong axial anisotropies in

both trinuclear units.

Experimental

Preparation of compounds

H6talen
t-Bu2 { ¼ 2,4,6-tris{1-[2-(3,5-di-tert-butylsalicylaldimino)-

2-methylpropylimino]-ethyl}-1,3,5-trihydroxybenzene} was

synthesized as described previously.25,53

[{(talent-Bu2)(MnIII(MeOH))3}2{MnIII(CN)6}](lac)3$10.5MeOH

(1). A suspension of H6talen
t-Bu2 (222 mg, 0.200 mmol) and

Mn(OAc)2$4H2O (135 mg, 0.551 mmol) in methanol (80 mL) was

heated at reflux for two hours. The resulting brown solution was

cooled to room temperature, purged with air for 30 minutes and

heated at reflux for additional two hours. After cooling to room

temperature the reaction solution was treated with a solution of

K3[Mn(CN)6] (32 mg, 0.097 mmol) in water (2 mL). The reaction

mixture was stirred at room temperature for 60 minutes and

Fig. 15 Comparison of the experimental data obtained from low-

temperature high-field micro-Hall-bar measurements on single-crystals of

1 at an angle of z 35! between magnetic field and c axis of the unit-cell,

with the theoretical curve representing a simulation of the experimental

data performed by a full-matrix diagonalization of the complete spin-

Hamiltonian using parameter set B with the magnetic field applied along

w ¼ 40!.

Fig. 16 Energy spectra of [MnIII6MnIII]3+ as a function of the magnetic field applied along the C3 axis (Bz, left panel) and along w ¼ 40! (B40, right

panel). The spectra were calculated using parameter set B. The straight lines are a guide to the eye in order to visualize the level crossing.

Fig. 17 Classical ground state of [MnIII6MnIII]3+ as obtained by spin

dynamics simulations with parameter set B at T ¼ 0 K and B ¼ 0 T.

Yellow bars represent the local anisotropy axes, red arrows the local spin

vectors.

2878 | Chem. Sci., 2012, 3, 2868–2882 This journal is ª The Royal Society of Chemistry 2012

• Central MnIII has s = 0!!!

• Hysteresis cannot be modeled by static observables.

Veronika Hoeke, Klaus Gieb, Paul Müller, Liviu Ungur, Liviu F. Chibotaru, Maik Heidemeier, Erich Krickemeyer, Anja
Stammler, Hartmut Bögge, Christian Schröder, Jürgen Schnack, Thorsten Glaser, Chem. Sci. 3 (2012) 2868
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Anisotropic exchange
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➠ ➡➡ ➠ ❐ ? ✖ Anisotropic exchange

Anisotropic exchange

H∼ =
∑
i,j

~s∼(i) · Jij ·~s∼(j)

= −2
∑
i<j

~s∼(i) ·
(
J11

ij ~e1
ij ⊗~e1

ij + J22
ij ~e2

ij ⊗~e2
ij + J33

ij ~e3
ij ⊗~e3

ij

)
·~s∼(j)

1. Each bond could have a different exchange tensor.

2. Jij can be represented in its eigenbasis.

3. Ions with anisotropic exchange: OsIII, . . . .
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➠ ➡➡ ➠ ❐ ? ✖ Anisotropic exchange

Anisotropic exchange – Mn 6Os

Central OsIII has pseudo spin s = 1/2! For sake of simplicity exchange Ising like.

Veronika Hoeke, Anja Stammler, Hartmut Bögge, Jürgen Schnack, Thorsten Glaser, submitted.
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Finite-temperature Lanczos
Method

(Good for dimensions up to 1010.)
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➠ ➡➡ ➠ ❐ ? ✖ Lanczos

Lanczos – a Krylov space method

• Idea: exact diagonalization in reduced basis
sets.

• But which set to choose???

• Idea: generate the basis set with the operator
you want to diagonalize:{
|φ 〉,H∼ |φ 〉,H∼

2 |φ 〉,H∼
3 |φ 〉, . . .

}
• But which starting vector to choose???

• Idea: almost any will do!

• Cornelius Lanczos (Lánczos Kornél, 1893-1974)

(1) C. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950).
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➠ ➡➡ ➠ ❐ ? ✖ FTLM

Finite-temperature Lanczos Method I

Z(T,B) =
∑

ν

〈 ν | exp
{
−βH∼

}
| ν 〉

〈 ν | exp
{
−βH∼

}
| ν 〉 ≈

∑
n

〈 ν |n(ν) 〉 exp {−βεn} 〈n(ν) | ν 〉 (Step 2)

Z(T,B) ≈ dim(H)
R

R∑
ν=1

NL∑
n=1

exp {−βεn} |〈n(ν) | ν 〉|2

• |n(ν) 〉 n-th Lanczos eigenvector starting from | ν 〉

• Partition function replaced by a small sum: R = 1 . . . 10, NL ≈ 100.

J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994).
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➠ ➡➡ ➠ ❐ ? ✖ FTLM

Finite-temperature Lanczos Method II

Z(T,B) ≈
∑
Γ

dim(H(Γ))
RΓ

RΓ∑
ν=1

NL∑
n=1

exp {−βεn} |〈n(ν, Γ) | ν, Γ 〉|2

• Approximation better if symmetries taken into account.

• Γ denotes the used irreducible representations.

J. Schnack and O. Wendland, Eur. Phys. J. B 78 (2010) 535-541
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➠ ➡➡ ➠ ❐ ? ✖ FTLM

How good is finite-temperature Lanczos?

• Works very well: compare frustrated cuboctahedron.

• N = 12, s = 3/2: Considered < 100, 000 states instead of 16,777,216.

Exact results: R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29, 403-452 (2010).
FTLM: J. Schnack and O. Wendland, Eur. Phys. J. B 78, 535-541 (2010).
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➠ ➡➡ ➠ ❐ ? ✖ Icosidodecahedron

Icosidodecahedron s = 1/2

Exp. data: A. M. Todea, A. Merca, H. Bögge, T. Glaser, L. Engelhardt, R. Prozorov, M. Luban, A. Müller, Chem.
Commun., 3351 (2009).
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➠ ➡➡ ➠ ❐ ? ✖ Icosidodecahedron

Icosidodecahedron s = 1/2

• The true spectrum will be much denser. This is miraculously compensated for by
the weights.

Z(T,B) ≈ dim(H)
R

R∑
ν=1

NL∑
n=1

exp {−βεn} |〈n(ν, Γ) | ν, Γ 〉|2

unilogo-m-rot.jpg Jürgen Schnack, Evaluation of anisotropic spin Hamiltonians 56/60



➠ ➡➡ ➠ ❐ ? ✖ Summary

Summary

• Exact diagonalization is great but limited.

• Finite-temperature Lanczos is a good approx-
imate method for Hilbert space dimensions
smaller than 1010, also for anisotropic molecules.

• Modeling of dynamic quantities, e.g. AC suscep-
tibility, very complicated.

• Anisotropic exchange is a new active direction.
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• T. Glaser, Chr. Heesing, M. Höck, N.B. Ivanov, S. Leiding, A. Müller, R. Schnalle,
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➠ ➡➡ ➠ ❐ ? ✖ The end

Thank you very much for your
attention.

The end.
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