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Abstract

Isotropic, but otherwise largely arbitrary Heisenberg models in the presence of a homoge-
neous magnetic field are considered, including various integrable, non-integrable, as well as
disordered examples, and not necessarily restricted to one dimension or short-range interactions.
Taking for granted that the non-equilibrium initial condition and the spectrum of the field-free
model satisfy some very weak requirements, expectation values of generic observables are an-
alytically shown to exhibit permanent long-time oscillations, thus ruling out equilibration. If
the model (but not necessarily the initial condition) 1s translationally invariant, the long-time
oscillations are moreover shown to exhibit synchronization in the long run, meaning that they
are invariant under arbitrary translations of the observable. Analogous long-time oscillations are
also recovered for temporal correlation functions when the system 1s already at thermal equilib-
rium from the outset, thus realizing a so-called time crystal [1].

General framework

We consider a Heisenberg model on an arbitrary (not necessarily one-dimensional) lattice, whose
sites are labeled by 7. We denote by A the set of all possible lattice sites, and by x their total number:

H = HQ—FhSZ,H()::ZJZ'jg;;-gj. (1)
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Due to SU(2) symmetry the eigenvectors of /1 can be chosen as simultaneously eigenvectors of S5~
and S° .= (S%)? + (SY)? + (S%)?, i.e.,
Hyln, 1) = EY |n, 1), S%n, 1) =1|n, 1), S?|n,1) = Ly(Ln+ 1) |n, 1), L, > 0. (2)
It follows that
Hln,l) = E,|n,0), E,;:=E"+1h. (3)

With respect to any pure or mixed initial state p(0), the expectation value of any observable A at time
t 1s given by
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where the sum is tacitly restricted to indices m, n, k, [ within their admitted range, and

k.l [,k
pmn = (M, k|p(0)|n, 1) , Apm = (n,l|Alm, k) . (5)

Going over from the summation index [ to v := [ — k yields

(Ax = S Lty gty = N B BN g gk (6)
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with f_,(t) = f;(t), hence (6) could be rewritten as a purely real Fourier series. Since the eigen-
vectors |n, ) are independent of h, the same property is inherited by the matrix elements in (5), and
finally by the functions f,,(¢) in (6). In other words, the only A-dependence arises via the exponential
factors on the left-hand side of (6).

Main results

For sufficiently large systems, the expectation values in (6) can be approximated very well by
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for the vast majority of all sufficiently late times ¢, where the prime symbol indicates that the summa-
tion 1s restricted to indices m and n with the property E,,% = E,,QL In the generic case that all energies
EY) are pairwise different, this boils down to

a kk+v k+uv,k
fu = E :pnn VAnnV : (8)
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(n,l|p(0)|n, ) can be identified with the population of the energy eigenstate |n, /) by the initial state
p(0). Likewise,

Pmax = max(n, [|p(0)|n, [) o< expi —O(r) 9)

n,l

thus amounts to the maximal level population; it is independent of /.

For pairs of indices (m, n) with E\), # E\, 4V denotes the degeneracy of the energy gap £, — E).
Then, the maximal energy gap degeneracy is defined as 7V := MaXy, n %Orm. v,gm and " refer, as
indicated by the superscript “0”, to the unperturbed system, and as such are independent of /.

Indicating the temporal average over an interval [0, 7’| by the symbol (- ), the mean square devia-
tion of the true expectation values from the auxiliary function obeys for all sufficiently large times T°

the inequality

([(AY — AJ*),. < 2" (286+1) AL Prnae » (10)

where s is the single-spin quantum number and x the size of the system. Furthermore, Ay is the
measurement range of the observable A, i.e., the difference between the largest and smallest possible
measurement outcomes, or equivalently, eigenvalues of A.
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Numerical Examples
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Figure 1: Red arrows: Visualization of the projections to the (x, y)-plane of the expectation values of the local spin vector
operators §; with respect to the initial state p(0) for a square lattice model. The grey and white regions indicate our choice

of two regions A; and A,. As initial condition p(0) we choose a pure state of the form p(0) = |¢) (| with 1)) o el o)
where |¢) is a normalized random vector and H differs by different directions of an applied field in regions A; and As.
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Figure 2: (a) and (b): Expectation values of the local observables s; for early times (a) as well as for late times (b) by
numerically solving the spin model for a 5 X 5 square lattice, open boundary conditions, and couplings J = —2. (c) and

(d): Same, but for the observables s;'s; ;.
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Figure 3: Same as in Fig. 2, but now for periodic boundary conditions in the 5 x 5 square lattice model with exactly
the same the initial condition. Since all spins are equivalent, near perfect synchronization and periodicity is observed,
compare also [2].
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