Frustration effects in magnetic molecules

Jürgen Schnack

Fachbereich Physik - Universität Osnabrück
http://obelix.physik.uni-osnabrueck.de/~schnack/

Seminar @ Johannes-Gutenberg-Universität
Mainz, September 21st 2005
In late 20th century people coming from

transport theory general relativity nuclear physics Zener diodes

were triggered by a “magnetic” enthusiast.
Meanwhile a big collaboration has been established

- M. Luban, P. Kögerler, D. Vaknin (Ames Lab, USA); J. Musfeldt (U. of Tennessee, USA); N. Dalal (Florida State, USA);
- Chr. Schröder (FH Bielefeld & Ames Lab, USA);
- H. Nojiri (Tohoku University, Japan);
- R.E.P. Winpenny (Man U); L. Cronin (U. of Glasgow);
- J. Richter, J. Schulenburg, R. Schmidt (U. Magdeburg);
- S. Blügel, A. Postnikov (FZ Jülich); A. Honecker (Uni Braunschweig).
- E. Rentschler (U. Mainz); U. Kortz (IUB); A. Tennant (HMI Berlin).
... and various general results could be achieved

1. Extension of Lieb, Schultz, and Mattis: \(k \)-rule for odd rings
2. Rotational bands in antiferromagnets
3. Giant magnetization jumps in frustrated antiferromagnets
4. Magnetization plateaus and susceptibility minima
5. Enhanced magnetocaloric effect
6. Hysteresis without anisotropy
7. A special triangular molecule-based spin tube
The beauty of magnetic molecules I

- Macro molecules (polyoxometalates etc.): consist of constituents like Hydrogen (H), Carbon (C), Oxygen (O), and diamagnetic ions (e.g. Mo) as well as paramagnetic ions like Iron (Fe), Chromium (Cr), Copper (Cu), Nickel (Ni), Vanadium (V) or Manganese (Mn);

- Pure organic magnetic molecules: magnetic coupling between high spin units (e.g. free radicals);

- Single spin quantum number $1/2 \leq s \leq 7/2$;

- Intermolecular interaction relatively small, therefore measurements reflect the thermal behaviour of a single molecule.
The beauty of magnetic molecules II

- Dimers (Fe_2), tetrahedra (Cr_4), cubes (Cr_8);
- Rings, especially iron rings (Fe_6, Fe_8, Fe_{10}, ...);
- Complex structures (Mn_{12}) – drosophila of molecular magnetism;
- “Soccer balls”, more precisely icosidodecahedra (Fe_{30}) and other macro molecules;
- Chain like and planar structures of interlinked magnetic molecules, e.g. triangular Cu chain:

The beauty of magnetic molecules III

\{Mo_{72}Fe_{30}\} – a molecular brother of the kagome lattice and an archetype of geometric frustration

- Giant magnetic Keplerate molecule;
- Structure: Fe - yellow, Mo - blue, O - red;
- Antiferromagnetic interaction mediated by O-Mo-O bridges (1).

- Classical ground state of \{Mo_{72}Fe_{30}\}: three sublattice structure, coplanar spins (2);
- Quantum mechanical ground state $S = 0$ can only be approximated, dimension of Hilbert space $(2s + 1)^N \approx 10^{23}$.

The beauty of magnetic molecules IV

Why magnetic molecules?

- Interacting spin system largely decoupled from remaining degrees of freedom;
- Transition few-spin system \Rightarrow many-spin system, contribution to understanding of bulk magnetism;
- Transition quantum spin system ($s = 1/2$) \Rightarrow classical spin system ($s_{Fe} = 5/2$, $s_{Gd} = 7/2$);
- Easy to produce, single crystals with $> 10^{17}$ identical molecules can be synthesized and practically completely characterized;
- Speculative applications: magnetic storage devices, magnets in biological systems, light-induced nano switches, displays, catalysts, qubits for quantum computers.
Model Hamiltonian – Heisenberg-Model

\[
\hat{H} = - \sum_{i,j} J_{ij} \vec{s}(i) \cdot \vec{s}(j) + g \mu_B B \sum_i \vec{s}_z(i)
\]

Heisenberg Zeeman

The Heisenberg Hamilton operator together with a Zeeman term are used for the following considerations.

\(J < 0 \): antiferromagnetic coupling.

Very often additional terms – dipolar, anisotropic – are utterly negligible. If needed they can be cast in the form \(\sum_{i,j} \vec{s}(i) \cdot D_{ij} \cdot \vec{s}(j) \).
Extension of Lieb, Schultz, and Mattis I

\(k \)-rule for even rings

- Goal: general properties of the magnetic spectrum depending on the structure, e.g. ground state quantum numbers.

- For AF Heisenberg rings of even \(N \) thus the momentum quantum number \(k \) is known for relative ground states of subsapces \(\mathcal{H}(M) \).

- Translational (shift) operator \(\tilde{T} \) moves ring by one site: \([\tilde{H}, \tilde{T}] = 0 \),

 Eigenvalues of \(\tilde{T} \): \(\exp \left\{ -i2\pi k_\nu / N \right\} \), \(k_\nu = 0, \ldots , N - 1 \).
Extension of Lieb, Schultz, and Mattis II

k–rule for odd rings

- An extended k-rule can be inferred from numerical investigations which yields the k quantum number for relative ground states of subspaces $\mathcal{H}(M)$ for even as well as odd spin rings

\[
\text{If } N \neq 3 \quad \text{then} \quad k \equiv \pm a \left[\frac{N}{2}\right] \mod N , \quad a = Ns - M
\]

<table>
<thead>
<tr>
<th>N</th>
<th>s</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1/2</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>1/2</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
</tbody>
</table>

Rotational bands in antiferromagnets I

• Often minimal energies $E_{\text{min}}(S)$ form a rotational band: Landé interval rule (1);

• Most pronounced for bipartite systems (2,3),
 good approximation for more general systems;

• Lowest band – rotation of Néel vector, second band – spin wave excitations (4).

Rotational bands in antiferromagnets II

Approximate Hamiltonian for \(\{\text{Mo}_{72}\text{Fe}_{30}\} \)

\[
H \approx -2J \sum_{(u<v)} \vec{s}(u) \cdot \vec{s}(v) \approx -\frac{D}{N} \left[\bar{\vec{S}}^2 - \sum_{j=1}^{N_{SL}} \bar{\vec{S}}_{j}^2 \right] = H^\text{eff}
\]

\(\vec{S}_j \) sublattice spins; \(D = 6 \); good description of magnetization.

Rotational bands in antiferromagnets III

Neutron scattering at \{\text{Mo}_{72}\text{Fe}_{30}\}

• INS shows broad peak at band separation, broad width is a sign of frustration, i.e. of the reduced significance of rotational bands.

• Thermal behavior understood; dependence on external field currently investigated.

Giant magnetization jumps in frustrated antiferromagnets I

\begin{equation}
\{ \text{Mo}_{72}\text{Fe}_{30} \}
\end{equation}

- Close look: $E_{\text{min}}(S)$ linear in S for high S instead of being quadratic (1);

- Heisenberg model: property depends only on the structure but not on s (2);

- Alternative formulation: independent localized magnons (3);

Giant magnetization jumps in frustrated antiferromagnets II

Localized Magnons

\[|\text{localized magnon}\rangle = \frac{1}{2} (|1\rangle - |2\rangle + |3\rangle - |4\rangle) \]

\[|1\rangle = s^{-1} (|\uparrow\uparrow\uparrow\ldots\rangle \text{ etc.} \]

\[H|1\rangle = J\{ |1\rangle + 1/2(|2\rangle + |4\rangle + |5\rangle + |8\rangle) \} \]
\[H|2\rangle = J\{ |2\rangle + 1/2(|1\rangle + |3\rangle + |5\rangle + |6\rangle) \} \]
\[H|3\rangle = J\{ |3\rangle + 1/2(|2\rangle + |4\rangle + |7\rangle + |6\rangle) \} \]
\[H|4\rangle = J\{ |4\rangle + 1/2(|1\rangle + |3\rangle + |7\rangle + |8\rangle) \} \]

\[H|\text{localized magnon}\rangle \propto |\text{localized magnon}\rangle \]

- Triangles trap the localized magnon, amplitudes cancel at outer vertices.
Giant magnetization jumps in frustrated antiferromagnets III

Kagome Lattice

- Non-interacting one-magnon states can be placed on various lattices, e.g. the kagome lattice;

- Each state of n independent magnons is the ground state in the Hilbert subspace with $M = N s - n$;

- Linear dependence of E_{min} on M \Rightarrow magnetization jump;

- Maximal number of independent magnons: N/9;

- Jump is a macroscopic quantum effect!

Condensed matter physics point of view: Flat band

- Flat band of minimal energy in one-magnon space, i.e. high degeneracy of ground state energy in $\mathcal{H}(M = Ns - 1)$;

- Localized magnons can be built from those eigenstates of the translation operator, that belong to the flat band;

- Sawtooth chain exceptional since degeneracy is $N/2$ (very high).

Enhanced magnetocaloric effect I
Basics

\[
\left(\frac{\partial T}{\partial B} \right)_S = -\frac{T}{C} \left(\frac{\partial S}{\partial B} \right)_T
\]
(adiabatic temperature change)

- Heating or cooling in a varying magnetic field. Discovered in pure iron by E. Warburg in 1881.

- Typical rates: 0.5 . . . 2 K/T.

- Giant magnetocaloric effect: 3 . . . 4 K/T e.g. in Gd_5(Si_xGe_{1-x})_4 alloys (x ≤ 0.5).

- MCE especially large at large isothermal entropy changes, i.e. at phase transitions (1), close to quantum critical points (2), or due to the condensation of independent magnons (3).

Enhanced magnetocaloric effect II

Simple af $s = 1/2$ dimer

- Singlet-triplet level crossing causes a “quantum phase transition” (1) at $T = 0$ as a function of B.

- $M(T = 0, B)$ and $S(T = 0, B)$ not analytic as function of B.

- $C(T, B)$ varies strongly as function of B for low T.

(1) If you feel the urge to discuss the term “phase transition”, please let’s do it during the coffee break. I will bring Ehrenfest along with me.
Enhanced magnetocaloric effect III
Entropy of af $s = 1/2$ dimer

$S(T = 0, B) \neq 0$ at level crossing due to degeneracy

Enhanced magnetocaloric effect IV

Isentrops of af $s = 1/2$ dimer

Magnetocaloric effect:
(a) reduced,
(b) the same,
(c) enhanced,
(d) opposite
when compared to an ideal paramagnet.

Case (d) does not occur for a paramagnet.

blue lines: ideal paramagnet, red curves: af dimer
Enhanced magnetocaloric effect V
Two molecular spin systems

- Graphics: isentrops of the frustrated cuboctahedron and a $N = 12$ ring molecule;
- Cuboctahedron features independent magnons and extraordinarily high jump to saturation;
- Degeneracy and $(T = 0)$–entropy at saturation field higher for the cuboctahedron;
- Adiabatic (de-) magnetization more efficient for the frustrated spin system.

no more time option
Metamagnetic phase transition I

- Normally hysteretic behavior of Single Molecule Magnets is an outcome of magnetic anisotropy.
- The classical AF Heisenberg Icosahedron exhibits a pronounced hysteresis loop.
- It shows a first order phase transition at $T = 0$ as function of B.
- The minimal energies are realized by two families of spin configurations.
- The overall minimal energy curve is not convex \Rightarrow magnetization jump.

Metamagnetic phase transition II

- Quantum analog: Non-convex minimal energy levels \Rightarrow magnetization jump of $\Delta M > 1$.
- Lanczos diagonalization for various s.
- True jump of $\Delta M = 2$ for $s = 4$.
- Polynomial fit in $1/s$ yields the classically observed transition field.

Summary

Frustration can lead to exotic behavior. And, the end is not in sight, . . .
... however, this talk is at its end!

Thank you very much for your attention.
Information

Advances and Prospects in Molecular Magnetism

362. Wilhelm und Else Heraeus-Seminar
Bad Honnef, 13. 11. 2005 - 16. 11. 2005

www.molmag.de
Quantum Magnetism

Lecture Notes in Physics, Vol. 645
Schollwöck, U.; Richter, J.; Farnell, D.J.J.; Bishop, R.F. (Eds.)
2004, XII, 478 p., Hardcover, 69,95 €
ISBN: 3-540-21422-4

Mikeska, Kolezhuk, One-dimensional magnetism
Richter, Schulenburg, Honecker, Q. Mag. in 2-D
Schnack, Molecular Magnetism
Ivanov, Sen, Spin Wave Analysis
Laforencie, Poilblanc, Low-Dim. Gapped Systems
Cabra, Pujol, Field-Theoretical Methods
Farnell, Bishop, Coupled Cluster Method
Klümper, Integrability of Quantum Chains
Sachdev, Mott Insulators
Lemmens, Millet, Spin Orbit Topology, a Triptych

Jürgen Schnack, Frustration effects in magnetic molecules
Magnetization plateaus and susceptibility minima

- Octahedron, Cubocthedron, Icosidodecahedron – little (polytope) brothers of the kagome lattice with increasing frustration.

- Cubocthedron & Icosidodecahedron realized as magnetic molecules.

- Cubocthedron & Icosidodecahedron feature plateaus, e.g. at $M_{\text{sat}}/3$ and independent magnons.

- Susceptibility shows a pronounced dip at $B_{\text{sat}}/3$ (classical calculations and quantum calculations for the cuboctahedron).

- Experimentally verified with $\{\text{Mo}_{72}\text{Fe}_{30}\}$.

A frustrated triangular Cu chain

- \([(\text{CuCl}_2\text{tachH})_3\text{Cl}]\text{Cl}_2\), tach = cis,trans-1,3,5-triamino-cyclohexane (1)

- One-dimensional stack of antiprisms of af coupled equilateral copper(II) triangles: three-leg ladder with frustrated rung boundary condition.

- Intra-triangle couplings J_1 – grey lines, inter-triangle couplings J_2 – black lines.

Triangular Cu chain: susceptibility

- Intra-triangle exchange J_1: bridging chloro ligand and hydrogen bonds; Cu-Cu distance is 4.46 Å.

- Inter-triangle exchange J_2: hydrogen-bonded Cu-Cl⋯H-N-Cu super-exchange; Cu-Cu distance is 6.82 Å.

- Conjecture: weakly coupled triangles, i.e. $|J_2| \ll |J_1|$
 \implies \text{independent triangles at high } T; \text{ effective spin-1/2 chain at low } T: \text{ wrong!}

Triangular Cu chain: magnetization

- Weakly coupled triangles would result in pronounced plateau at 1/3 of the saturation magnetization.

- High-field magnetization measurement shows, however, no plateau.

- Solution: isotropic Heisenberg model with antiferromagnetic exchange parameters $J_1 = -0.9$ K and $J_2 = -1.95$ K and $g = 2.095$ (average of small g-anisotropy).

- Deviations at high field: g-anisotropy and staggered field; deviations at low field: singlet-triplet gap overestimated in finite systems.
Triangular Cu chain: gaps

- Singlet-triplet gap $\Delta_{0-1} \gtrapprox 0.4 \pm 0.05$ K; singlet-singlet gap $\Delta_{0-0} \approx 6$ K

- Ground state non-degenerate (1), whereas twofold degenerate for weakly coupled triangles (2).