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Magnetization curves of deposited finite spin chains
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The characterization and manipulation of deposited magnetic clusters or molecules on surfaces is a
prerequisite for future utilization. For this purpose spin-flip inelastic electron tunneling spectroscopy
using a scanning tunneling microscope proved to be very precise in determining e.g. exchange
constants in deposited finite spin chains in the meV range. In this Letter we provide numerical
justification for the underlying assumptions made in such investigations. To this end we study the
impurity magnetization of antiferromagnetic chains for varying couplings to a conduction electron
band of a metal substrate. We show under which circumstances the screening of a part of the system
enables one to deduce molecular parameters of the remainder from level crossings in an applied field.
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Introduction–The question whether and how deposited
magnetic clusters or molecules change their magnetic
properties when deposited on a metallic substrate is of
fundamental importance especially in view of possible ap-
plications as next generation storage devices or magnetic
logic circuits [1–7]. One experimental method to investi-
gate local magnetic properties is spin-flip inelastic elec-
tron tunneling spectroscopy with a scanning tunneling
microscope [1, 8]. In this method jumps of the differ-
ential conductivity signal transitions between magnetic
levels of the deposited entity, of course under the as-
sumption of a weak coupling to the substrate. Follow-
ing this philosophy the authors of Ref. [8] conjectured
the strength of superexchange interactions in deposited
molecular nanomagnets. The latter were constructed
by depositing layers of cobalt phthalocyanine molecules
which self-organized in a stacked manner so that the
cobalt ions formed finite spin chains on the substrate.
This arrangement is scetched in Fig. 1 (a).
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FIG. 1: (Color online) Sketch of the trimer configuration (a)
investigated in Ref. [8]: stacked magnetic centers interact via
an exchange coupling J , the lowest moment is coupled to the
metal surface with strength JA. J and JA are unknown, J
shall be derived from experimental data. (b) shows a trian-
gular configuration discussed later in this Letter.

When interpreting the observed structure of mag-
netic levels in such measurements one has to conjecture
whether and how much of the deposited magnetic mo-

ment is screened by the conduction electrons, since this
has a great influence on the magnetic properties of the
remainder. In Ref. [8] it was deduced that the Co2+

spin with s = 1/2 closest to the surface was completely
Kondo-screened and therefore the observed magnetic lev-
els should result from a practically uncoupled remainder
of (N − 1) spins.
In this Letter we investigate by means of the Numeri-

cal Renormalization Group method (NRG) [9–11] numer-
ically exactly how the magnetic properties of deposited
structures as those shown in Fig. 1 depend on the ex-
change coupling JA to the substrate’s conduction elec-
trons, the internal exchange coupling J , and the applied
magnetic field B at low temperature T . Depending on
JA the screening can vary between full screening and par-
tial screening of the spin-1/2 closest to the surface. In
the case of full screening the magnetic properties of the
deposited entity are indeed identical to those of the re-
maining spin system without the screened spin.
For our investigations we employ a single-channel

single-impurity Kondo model as a minimal model to
describe the correlations induced by the exchange in-
teraction between the conduction electrons of the non-
magnetic metal and one spin of the magnetic molecule
[12, 13]. As already demonstrated in Ref. [14] the mag-
netization steps due to ground state level crossings in
an applied magnetic field can be used as fingerprints of
the underlying spin model. This will be shown by in-
vestigating different sizes of chains as well as triangular
arrangements of magnetic moments.
Reminder on NRG–In order to model a molecule and

its coupling to a surface we use the following Hamiltonian
which consists of three parts [12–14]:

H
∼

= H
∼ electrons +H

∼ coupling +H
∼ impurity , (1)

H
∼ electrons =

∑

i6=j, σ

tijd∼
†
iσd∼jσ + gµBB

∑

i

s
∼

z
i . (2)

The first part H
∼ electrons represents non-interacting elec-

trons on a lattice. The hopping parameter tij is non-zero

http://de.arxiv.org/abs/1312.0864v1


2

only if the lattice sites i, j are nearest neighbours. d
∼

†
iσ

and d
∼jσ are fermionic creation and annihilation opera-

tors for electrons with spin direction σ. The interaction
with an external magnetic field B is given by the Zeeman
term with s

∼
z
i representing the effective electron spin at

lattice site i, g the g-factor and µB the Bohr magneton.
The second part H

∼ impurity models the impurity, i.e., the

molecule or chain via an effective Heisenberg model for
all connected spins S

∼i and a Zeeman term. Jij is the

interaction between spins i and j and antiferromagnetic
for Jij > 0,

H
∼ impurity = 2

∑

i<j

JijS∼i · S∼j + g µB B
∑

i

S
∼

z
i . (3)

The last part H
∼ coupling describes the Kondo-like inter-

action of the molecule with the surface. The coupling
constant JA is positive for antiferromagnetic coupling

H
∼ coupling = 2 · JA · S

∼1 · s∼0 . (4)

To calculate thermodynamic values within this modell we
use Wilson’s Numerical Renormalization Group (NRG)
with the discretization scheme proposed by Žitko and Pr-
uschke [15, 16] and a z-averaging for 2 values. A constant
density of states is assumed.
It is possible that in reality molecular orbitals of ph-

thalocyanine molecules hybridize with surface states,
compare e.g. [7, 17–21]. Our approach, like others
[12, 13], simplifies the situation to a point where the de-
posited molecule is reduced to its spin degrees of freedom
which interact with the metal’s conduction electrons.
Results and interpretation–Before we discuss our nu-

merical results of a finite spin chain interacting with a
metal substrate we would like to shortly look at a free
three-site chain of spins s = 1/2. Its levels split under
the influence of an applied magnetic field as depicted on
the l.h.s. of Fig. 2. At a certain magnetic field value
Bc = 3 · J/(gµB) the lowest (S = 1/2,M = −1/2) and
(S = 3/2,M = −3/2) levels cross. If the lowest spin of
the trimer would be completely screened, the remaining
dimer would possess a different level scheme with a dif-
ferent crossing field Bc = 2 · J/(gµB) as depicted on the
r.h.s. of Fig. 2. Therefore, infering J from spectroscopic
data or equivalently from crossing fields strongly depends
on the degree of screening.
In the following we discuss the so-called impurity mag-

netization, i.e. the thermal expectation value of molecu-
lar magnetic moment

∑
i S

∼
z
i as a function of the applied

field for various couplings to the substrate. In order to
work with reasonable numbers we set the intramolecu-
lar coupling to J = 1 meV and the half-bandwidth of
the metal to W = 1 eV. As the temperature we choose
T ≈ 2 · 10−4 W/kB ≈ 2.36 K, which is lower than the
intramolecular coupling, but not too low so that thermo-
dynamic functions are still smooth [23].
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FIG. 2: (Color online) Sketch of the Zeeman levels of a trimer
of three spins s = 1/2 (l.h.s.) and of a dimer of two spins
s = 1/2 (r.h.s.).

After looking at the lowest Zeeman levels of a free
trimer we now consider the coupling of such a trimer to a
surface as described by Eq. (4) and shown in Fig. 1 (a).
The strength of the coupling is parametrized by JA. The
impurity magnetization curves depicted in Fig. 3 cover
the whole range from the free (JA = 0) or weakly cou-
pled case to the strongly coupled case, which is reached
for JA & 0.5 eV. While the case JA = 0 coincides with
the discussed free trimer by construction, the strongly
coupled case coincides with the magnetization curve of a
free dimer.
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FIG. 3: (Color online) Impurity magnetization vs. magnetic
field for the trimer shown in Fig. 1 (a); vertical lines mark
the crossing fields for various scenarios; T ≈ 2 · 10−4 W/kB ≈

2.36 K.

Additionally to the magnetization curves, Fig. 3 in-
cludes the crossing fields for various scenarios which can
be derived from the magnetization curves. The vertical
lines marking these fields shift from the analytical solu-
tion of a free trimer towards the analytical solution of a
free dimer for increasing coupling to the substrate. The
analytical solutions thus are boundaries for the crossing
field independent of the coupling JA.

Focusing on the strong coupling regime, Fig. 4 shows
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variations of the couplings J and JA. Within this regime,
i.e. for strong enough JA, the magnetization curves are
independent of JA and coincide with the solution for a
free dimer and thus depend on the coupling J in the
same way the analytical solution does. In particular the
crossing field is given by Bc = 2·J/(gµB). Given a strong
enough coupling to reach the strong coupling regime it is
therefore possible to derive J from the crossing field. Our
investigation also shows that the maximum uncertainty
in the determination of J , in the case of unknown JA, is
given by the difference between the (analytical) solutions
for the crossing field of the unscreened system and the
fully screened one.
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FIG. 4: (Color online) Impurity magnetization vs. magnetic
field for the strong coupling case; vertical lines mark crossing
fields; T ≈ 2 · 10−4 W/kB ≈ 2.36 K. The magnetization curve
depends only on J , not on JA in the strong coupling case.

Similiar results are obtained if a triangular structure is
used, where all three spins couple to each other, but still
only one couples to the substrate, compare Fig. 1 (b). For
the case of JA = 0 analytical results can be obtained for
both trimer chain and triangle [22]. These show that the
magnetization curves and thus the crossing fields coin-
cide for T → 0. Figure 5 shows the magnetization curves
of triangle and trimer chain for finite temperature where
the curves for JA = 0 feature small differences. For in-
termediate couplings to the substrate, 0 < JA < 0.5 eV,
the differences are more pronounced.
Figure 5 furthermore shows the case of strong coupling

to the substrate, again JA & 0.5 eV. In this case trimer
chain and triangle are indistinguishable on the basis of
their magnetization curves and thus their crossing fields,
compare ×-symbols and upright triangles in Fig. 5.
After considering the triangle, and thus a slightly dif-

ferent structure of the impurity, we now come back to
chain-like impurities and extend our original trimer chain
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FIG. 5: (Color online) Impurity magnetization vs. mag-
netic field for trimeric and triangular impurities; T ≈ 2 ·

10−4 W/kB ≈ 2.36 K.

to four and five spins analogous to the experiment in
Ref. [8]. Figure 6 shows the magnetization curves of a
tetramer chain for various couplings to the substrate.
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FIG. 6: (Color online) Impurity magnetization vs. magnetic
field for tetramer impurities; vertical lines separate areas with
an increase (green arrows) or decrease (red arrows) in magne-
tization by strongly coupling the free system to the substrate;
T ≈ 6 · 10−8 W/kB ≈ 6.92 · 10−4 K.

The curves are affected by the coupling to the substrate
in a similar way to those of the trimer chain with the
crossing fields decreasing for stronger couplings. In the
strong coupling regime the tetramer chain then shows the
same magnetization curve and crossing field as the free
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trimer. Analogously the magnetization curve and cross-
ing fields of the pentamer chain, as depicted in Fig. 7,
coincide with those of the free tetramer in the strong
coupling limit.
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FIG. 7: (Color online) Impurity magnetization vs. magnetic
field for pentamer impurities; vertical lines separate areas
with an increase (green arrows) or decrease (red arrows) in
magnetization by strongly coupling the free system to the
substrate; T ≈ 6 · 10−8 W/kB ≈ 6.92 · 10−4 K.

Unlike the other figures, Figures 6 and 7 include
vertical lines which confine areas of (practically) con-
stant magnetization for the free and the strongly cou-
pled chains at a now very low temperature of T ≈

6 · 10−8 W/kB ≈ 6.92 · 10−4 K. For those areas an arrow
indicates whether the magnetization is increased (green
arrow) or decreased (red arrow) due to the coupling to
the substrate. For the tetramer chain with its ground
state spin of S = 0 the screening leads to an increased
magnetization at (and thus a responce to) small magnetic
fields. In contrast the magnetization for the pentamer
chain with its ground state spin of S = 1/2 is decreased
at small magnetic fields and thus will not respond to
small magnetic fields in the strong coupling regime.

Summarizing, NRG calculations of the impurity mag-
netization provide a very valuable tool in order to ra-
tionalize experimental assumptions and results as for
instance those of Ref. [8]. Future investigations of
more complicated impurities as for instance magnetic
molecules with non-Heisenberg terms in the Hamilto-
nian pose no problem, but NRG is technically limited to
single-channel (or with massive super computing time to
two-channel) contacts. This is due to the rapidly growing
Hilbert space dimension which is already for two channels
the square of the dimension for one channel.
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