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Liquid-gas phase
transition in finite
nuclei
Simulations in Fermionic
Molecular Dynamics

simulations show, however, that even
small systems exhibit all features of a
phase transition, provided the total
energy of the system can be determi-
ned well enough for each member of
the statistical ensemble. The results
are compared to the caloric curve
deduced for finite nuclei by the ALA-
DIN collaboration.

The investigation of the equation of
state of nuclear matter, in particular the
search for the long predicted liquid-gas
phase transition is an experimentally
tough problem. Besides the fact that
one can manipulate only finite nuclei,
the measured information on the
system is rather indirect. The difference
to macro–physics is not only the
smallness of the system, but also that
one cannot control the thermodynamic
quantities volume or pressure. TIn an
experiment one is colliding two nuclei
in order to produce excitation energy
and compression. But as there is no
container, the system begins to expand
into the vacuum right after the com-
pression and heating phase. Therefore,
one is all the time in a transient state
where equilibrium in its original mea-
ning, i.e. a time–independent stationary
macro-state, is not reached. 

The challenge to study the nuclear
equation of state has been accepted not
only for astrophysical reasons, like a
deeper understanding of supernova
explosions or neutron stars, but also
because the  subject in itself is of inte-
rest as one is dealing with a small char-
ged quantum liquid which is self–bound
by the strong interaction. 

In the following we investigate the
liquid–gas phase transition within Fer-
mionic Molecular Dynamics. This
model can simulate nucleus–nucleus
collisions as well as equilibrium situati-
ons. We will, however, concentrate on
an experimentally not accessible situa-
tion, namely an excited nucleus which
is put into an external field. This field
plays the role of a container so that
evaporated nucleons cannot escape, but

The forces between the individual
nucleons in a nucleus vary according
to distance in a manner similar to
those between molecules in a liquid.
Thus the interesting question arises,
whether with increasing excitation
energy a liquid-gas phase transition
can be observed in finite nuclei.
Generally it is believed that signatu-
res of phase transitions are washed
out in systems with few constituents
due to finite size effects. Theoretical

Model: Excited nucleus in an external field G
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Figure 1: The self-bound excit-
ed nuclear system, whose den-
sity profile is represented by the
yellow area, is enclosed in a
broad container potential (red
line). For the thermometer,
which is coupled to all nucle-
ons, only the oscillator potential
(blue line) is displayed together
with the lowest eigenstates.
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equilibrate with the remaining nucleus
(hot liquid). 

The Fermionic Molecular Dynamics
(FMD) model [1] describes the quantum
system with a parameterized antisym-
metric many-body wave function. In
this many-body state each nucleon is
represented by a Gaussian wave
packet, which is the closest possible
quantum analogue to a classical pha-
se–space point. The wave packet is cha-
racterized by its mean position, mean
momentum and the widths around the-
se mean values, all of which are
time–dependent. Their FMD equations
of motion are derived from the
time–dependent quantum variational
principle. Although the derivation is
straightforward, the resulting equations
are very complex and the numerical
effort becomes prohibitive for more
than about 80 particles. This is due to
the antisymmetrization which is nee-
ded to describe properly the fermionic
nature of the nucleons . Without this, a
nucleus is not a quantum liquid with
Fermi-Dirac statistics but a classical
system. 

In the present investigation the
effective two-body nucleon-nucleon
interaction in the Hamilton operator
consists of a short-range repulsive and
a long-range attractive central potential
with spin and isospin admixtures and
includes the Coulomb potential [2]. The
parameters of the interaction have
been adjusted to minimize deviations
between calculated and measured bin-
ding energies for nuclei with mass
numbers 4 # A # 40.

Besides the kinetic energy of the
nucleons and the nucleon-nucleon
interaction, the Hamilton operator also
includes an external field which serves
as a container. The container is an
important part of the model because it
keeps the evaporated nucleons in the
vicinity of the remaining drop of liquid.
This facilitates equilibration of liquid
and surrounding vapor. The vapor
pressure is controlled by the volume

which is made available by the external
potential. 

In our model the nuclear system is
quantal and strongly interacting. The
quantal nature does not allow to deduce
the temperature from the kinetic ener-
gy distribution as it is the case for clas-
sical systems with momentum-indepen-
dent forces. The zero–point motion is
always present and does not imply a
finite temperature. 

Therefore, the concept of an exter-
nal thermometer which is coupled to
the nuclear system is used. The ther-
mometer consists of a quantum system
of distinguishable particles which move
in their own potential (different from
the container potential) and interact
weakly with the nucleons (see Fig. 1).
The time evolution of the whole system
is described by the FMD equations of
motion. 

Snapshots of an excited 16O nucleus G

i.e. gas (saturation density r0

= 0.16 fm–3). The cube which
is drawn to help visualizing
three dimensions has an edge
length of 20 fm.

particle of 3.5 MeV (left),
7MeV (center) and 11MeV
(right). Bright surfaces enclose
densities above r0/10 i.e. liq-
uid, darker surfaces r0/100

Figure 2: Snapshots of an
excited 16O enclosed in a shal-
low harmonic container poten-
tial with level spacing hv =
1MeV and excitation energy per
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I n a macroscopic system, where
the particle number N is very large
(e.g. N = 1020), the number of micro-
states, rN(E)DE, in an energy interval
of width DE around E is huge so that
the density of states, rN(E), is smooth
enough to allow the definition of a
first and second derivative.

If, in an experiment, a system is
prepared such that its energy is given
by E within a resolution DE, one calls
it a microcanonical ensemble and
attributes an entropy

to it, which may be used in conventio-
nal thermodynamic relations as long
as the energy E is not too close to the
ground-state energy where the spec-
trum is not dense.

With increasing energy E new
degrees of freedom may open up and
cause a phase transition, for example,
from a neutral gas of atoms to ions
and electrons or from a liquid with
high density to a gas with low density.
This coincides with an increase in
steepness of the density of states
rN(E).

A typical situation is sketched in
the figure, where a first order phase
transition occurs between e1 and e2.
The red lines show the entropy of the
microcanonical ensemble divided by
the particle number N as function of
the energy per particle e = E/N. The
reason for this representation is that,
for systems with short-range interac-
tions, the shape of the graph depends
only weakly upon N. In particular, the
energies e1 and e2 which separate the
liquid, mixed, and gas phase do not
change much with N, once N is large
enough. 

In the thermodynamic limit where
N → ` the density of states grows

P H A S E  T R A N S I T I O N  A N D  D E N S I T Y  O F S TAT E S

and equilibrium with the rest of the
sytem which is characterized by a den-
sity of states rrest, the states of the sub-
system with energy en ! E are occupied
with Boltzmann weight factors e-ben,
where

and where

In the nuclear case the subsystem
may be, for example, the kinetic degre-
es of freedom of protons, the intrinsic
excitations of a fragment, or the multi-
plicities of small clusters.

In a heavy-ion collision, however, it
is unclear whether global equilibrium
between these degrees of freedom is
achieved. ■
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exponentially with E in the mixed pha-
se such that the microcanonical tempe-
rature (blue lines)

stays constant and the specific heat
diverges. For a finite particle number
(e.g. N =100) the density of states exhi-
bits a depression in this region. The
deviation from the envelope (N → `)
then is the surface entropy per particle,
which is proportional to 1/N1/3 due to
the non-negligible surfaces of the bub-
bles or drops in the coexistence region.

The most promising way to identify
a phase transition in a finite system is
to prepare a microcanonical situation,
measure the density of states and esti-
mate the energies e1 and e2 by fitting the
double-tangent to ln(rN(Ne)DE). The
density of states can be measured by
looking at a small subsystem acting as a
thermometer. Assuming weak coupling
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Figure 3: Caloric curve of
24Mg, 27Al and 40Ca at
hv=1MeV.

system with 8 neutrons and 8 protons
are shown. On the left hand side, the
16O nucleus has been given an excitati-
on energy per nucleon E*/A of 3.5 MeV
by randomly displacing the wave
packets of the ground state. After equi-
libration this corresponds to a tempera-
ture of about 4 MeV. It can be seen that

The determination of the caloric
curve is done in the following way. The
nucleus is excited by displacing all
wave packets from their ground–state
positions randomly. Both, center of
mass momentum and total angular
momentum are kept fixed at zero. To
allow a first equilibration between the
wave packets of the nucleus and those
of the thermometer, the system is evol-
ved over a long time, about 10000 fm/c
(a typical time for a nucleon to cross the
hot nucleus is 30 fm/c). After that, a
time–averaging of the energy of the
nucleonic system as well as of the ther-
mometer is performed over a time
interval of 10000 fm/c. During this time
period the average of the nucleonic ex-
citation energy is evaluated. The
time–averaged energy of the thermo-
meter, which is calculated during the
same time interval, determines the
temperature through the relation for an
ideal gas of distinguishable particles in
a common oscillator potential. 

In Figure 2, several snapshots of the
one–body density of a hot nuclear

the two-body interaction used here
creates an alpha-particle substructure
in 16O. There is no gas around the
vibrating nucleus because the excitati-
on energy is not high enough to evapo-
rate particles. 

In the center column of Figure 2, the
excitation energy per nucleon is 7 MeV.
Bright areas which indicate the liquid
are surrounded by a cloud of gas (for
details see the figure caption). Moreo-
ver, the nuclear system very often falls
apart into several smaller drops which
are embedded in vapor. 

The right hand side displays the
same system but for an excitation ener-
gy per nucleon of 11 MeV. Here, half of
the time no high density areas are visi-
ble (first and third frame) and when a
drop is formed it is rather small. 

As we shall see later, the two higher
E*/A values at 7 and 11 MeV corre-
spond both to a temperature around 5 –
6 MeV in the coexistence region. It is
quite obvious that the additional excita-
tion energy of 4 MeV per particle is
used to transform liquid to vapor so
that we see a clear first order liquid–gas
phase transition. This is remarkable as
we are dealing with only 16 nucleons
and the dynamical model converges to
a pure state with a very limited number
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Figure 4: Caloric curve deter-
mined by the ALADIN group
from the decay of spectator
nuclei. The temperature THeLi
is derived from the yield ratios
3He to 4He and 6Li to 7Li and
provides a common scale in the
liquid, fragmentation and vapor
regimes.
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of degrees of freedom, actually only
eight per particle, three for mean posi-
tion, three for mean momentum and
two for the widths of the corresponding
distributions. Furthermore, we have a
fermionic system in which due to anti-
symmetrization the level density is
much smaller than in classical mecha-
nics. 

The harmonic oscillator container,
displayed in Figure 1, is very wide so
that the vapor pressure is rather small.
Estimates yield 10–4 to 10–2 MeV/fm3

which should be compared to a critical
pressure of about 0.5 MeV/fm3. At the
surface of the cubes indicated in Figure
2, the container potential itself is only
1.2 MeV higher than in the center. 

The relations between the excitation
energy and the temperature for 24Mg,
27Al and 40Ca using the same container
potential with a level spacing of hv =
1MeV is depicted in Figure 3. In order
to put the results on the same scale, the
respective ground state energies were
subtracted from the averaged energy. 

All caloric curves clearly exhibit
three different parts. Beginning at small
excitation energies the temperature
rises steeply with increasing energy as
expected for the shell model. The
nucleons remain bound in the excited
nucleus which behaves like a drop of
liquid. At an excitation energy of 3 MeV
per nucleon the curve flattens and stays
almost constant up to about 11 MeV.
This coexistence plateau at T ø 5 to 6
MeV extends from E*/A ø 3 MeV to
about E*/A ø 11 MeV where all
nucleons are unbound and the system
has reached the vapor phase. The
latent heat at pressure close to zero is
hence about 8 MeV. 

One has to keep in mind that the
plateau is not the result of a Maxwell
construction as in nuclear matter calcu-
lations. In the excitation energy range
between 3 and 11 MeV per particle, an
increasing number of nucleons is found
in the vapor phase outside the liquid
phase. This has been shown in Figure

2. The caloric curve shown in Figure 3
has a striking similarity with the caloric
curve determined by the ALADIN group
[4] which is displayed in Figure 4. The

position and the extension of the pla-
teau agree with the FMD calculation
using a containing oscillator potential
with hv = 1MeV. Nevertheless, there are
important differences. The measure-
ment addresses an expanding
non–equilibrium system, but the calcu-
lation deals with a contained equilibri-
um system. In addition, the used ther-
mometers are different; the experiment
employs an isotope thermometer based
on chemical equilibrium and the calcu-
lation uses an ideal gas thermometer.
One explanation why the thermodyna-
mic description of the experimental
situation works and compares nicely to
the equilibrium result might be that in
the coexistence region, the excited
spectator matter equilibrates faster
than it expands and cools. ■
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