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We present numerical evidence for the crystallization of magnons below the saturation field at
non-zero temperatures for the highly frustrated spin-half kagomé Heisenberg antiferromagnet. This
phenomenon can be traced back to the existence of independent localized magnons or equivalently
flat-band multi-magnon states. We also present a tentative phase diagram of this transition, thus
providing information for which magnetic fields and temperatures magnon crystallization can be
observed experimentally. The emergence of a finite-temperature continuous transition to a magnon-
crystal is expected to be generic for spin models in dimension D > 1 where flat-band multi-magnon
ground states break translational symmetry. The universality class of this transition depends upon
the underlying lattice; for the kagomé Heisenberg antiferromagnet this transition is expected to
belong to the D = 2 three-state Potts model universality class.

Introduction.—Strongly correlated electronic spin sys-
tems may possess unusual and thus attractive properties
such as magnetization curves characterized by sequences
of magnetization plateaus with possible crystallization of
magnons as reported for Cd-kapellasite recently [1]. This
is of course a consequence of the intricate nature of their
many-body eigenstates [2–5], which, however, for, e.g.,
Hubbard as well as Heisenberg models under special cir-
cumstances can express itself as destructive interference
that “can lead to a disorder-free localization of particles”
[6]. For translationally invariant systems this automati-
cally yields flat bands in the single-particle energy spec-
trum, i.e., in one-magnon space in the case of spin Hamil-
tonians [7–14]. Today, flat-band physics is investigated
in several areas of physics, and many interesting phe-
nomena that are related to flat bands have been found,
see, e.g., Refs. [15–20]. Flat-band systems can be created
using, e.g., cold atoms in optical lattices [21, 22] or by
employing photonic lattices [23–25].

Among the flat-band systems, the highly frustrated
quantum antiferromagnets (AFMs) play a particular role
as possible solid-state realizations. There is a large vari-
ety of one-, two-, and three-dimensional lattices, where at
high magnetic fields the lowest band of one-magnon ex-
citations above the ferromagnetic vacuum is completely
flat [26, 27]. These flat-band antiferromagnets exhibit
several exotic features near saturation, such as a macro-
scopic magnetization jump at the saturation field [10], a
magnetic-field driven spin-Peierls instability [28], a finite
residual entropy at the saturation field [13, 14, 29], a very
strong magnetocaloric effect [14, 26, 30], and an addi-
tional low-temperature maximum of the specific heat sig-
naling the appearance of an additional low-energy scale
[26].

The focus of the present paper is on a prominent ex-

Figure 1. Sketch of a magnon crystal of localized magnons (of
minimal size) on the kagomé lattice antiferromagnet. These
localized magnons (red discs) are superpositions of spin flips
of spins residing at the vertices of the confining basic hexagons
of the kagomé lattice.

ample of a flat-band spin system, the spin-half kagomé
Heisenberg antiferromagnet (KHAF), that is a celebrated
paradigm of highly frustrated quantum magnetism [2–5].
The corresponding Hamiltonian is given by

H∼ = J
∑
{i<j}

~s∼i · ~s∼j + gµB B
∑
i

s∼
z
i , J > 0 , (1)

where the first term models the Heisenberg exchange be-
tween spins at nearest neighbor sites i and j and the sec-
ond term provides the Zeeman splitting in an external
magnetic field.

In addition to the widely debated character of the
spin-liquid ground state, the intriguing magnetization
process of the KHAF has attracted much attention
[1, 10, 13, 14, 26, 28, 29, 31–38]. The magnetization
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exhibits plateaus at certain fractions of the saturation
magnetization, namely at M/Msat = 3/9 = 1/3, 5/9,
7/9 and likely also at M/Msat = 1/9 [34, 35]. In con-
trast to the semiclassical M/Msat = 1/3 plateau in the
triangular-lattice Heisenberg antiferromagnet, see, e.g.,
[39–41], the kagomé plateau states are quantum valence-
bond states [13, 14, 28, 34, 35]. Moreover, around the
M/Msat = 7/9–plateau the flat lowest one-magnon band
[10] dominates the low-temperature physics and leads to
the exotic properties mentioned above. Interestingly, the
M/Msat = 7/9 plateau state just below the jump to
saturation is a magnon-crystal state that is the mag-
netic counterpart of the Wigner crystal state of inter-
acting electrons in two dimensions. Since the magnon
crystal spontaneously breaks translational symmetry, a
finite-temperature phase transition is possible in the two-
dimensional KHAF. The challenge is to find appropri-
ate theoretical tools to describe such a transition to the
magnon crystal for the quantum many-body system at
hand.

Remarkably, the very existence of a flat band allows
a semi-rigorous analysis of the low-temperature physics,
e.g., for most of the one-dimensional flat-band quantum
spin systems including the sawtooth chain [14, 29, 30]
and also for a few two-dimensional systems, such as the
frustrated bilayer [6, 42, 43] as well as the Tasaki lattice
[44]. Such a semi-rigorous analysis builds on the exis-
tence of compact localized many-magnon states, which
form either a massively degenerate GS manifold at the
saturation field Bsat or a huge set of low-lying excitations
for B . Bsat and B & Bsat. For the KHAF, the com-
pact localized many-magnon states live on non-touching
hexagons [10], which can be mapped to hard hexagons
on a triangular lattice [13, 14, 26, 29]. This situation is
depicted in Fig. 1.

On the experimental side the growing number of
kagomé compounds is promising with respect to possible
solid-state realizations of the kagomé flat-band physics
[45–53]. Very recently the magnetization process in high
field was reported for Cd-kapellasite [1]. The authors in-
terpret the observed plateau states “as crystallizations
of emergent magnons localized on the hexagon of the
kagomé lattice”. We will address the relation to our in-
vestigations in the discussion below.

Reliable predictions of the magnetic field–temperature
regions where the magnon-crystal phase exists are useful
to stimulate specific experiments. However, the semi-
rigorous analysis of the flat-band properties of the KHAF
based on compact localized many-magnon states, i.e., the
hard-hexagon approximation (HHA) is limited because of
the existence of a macroscopic number of additional non-
compact localized many-magnon states [27]. Moreover, at
non-zero temperature also non-localized eigenstates enter
the game and may influence the thermodynamics of the
KHAF. Thus, one may expect corrections to the theory
[13, 14] taking into account only compact states.

Figure 2. MagnetizationM/Msat: Region of the 7/9 plateau
for various finite size realizations of the KHAF.

Method.—To investigate the KHAF near the sat-
uration field we present large-scale finite-temperature
Lanczos (FTL) studies for finite lattices of N =
27, 36, 45, 54, 63, 72 sites, where we have selected only
lattices exhibiting the magnon-crystal plateau at
M/Msat = 7/9. (Note, N = 42 discussed in Ref. [37]
is not appropriate for the current purpose, because those
states giving rise to the plateau do not exist.) FTL is an
unbiased numerical approach by which thermodynamic
quantities are very accurately approximated by means
of trace estimators [54–58]. It takes into account the
full Hilbert space (in a coarse-grained way) and thus re-
dresses the shortcomings of the HHA. Moreover, the con-
sideration of six different lattices up to N = 72 allows to
estimate finite-size effects.

The eigenstates of the model are characterized by
the magnetic quantum number M belonging to the z-
component S∼

z of the total spin and the ~k-vector of the

translational symmetry. While for N = 27 and N = 36
we can take into account all sectors of |M |, for N > 36
we are restricted to sectors of larger |M |: |M | > 9/2 for
N = 45, |M | > 17 for N = 54, |M | > 43/2 for N = 63,
and |M | > 26 for N = 72, respectively. This restriction
is not severe, since close to the saturation field the eigen-
states with small |M | become excited states with higher
energy. Nevertheless, for N > 36 we are restricted to low
enough temperatures to avoid substantial contributions
of states with small |M | to the partition function.

The kagomé lattices of N = 27, 36, 45, 54, 63, 72 sites
correspond to hard-hexagon finite triangular lattices of
Ntrian = 9, 12, 15, 18, 21, 24 sites, respectively. On sym-
metry grounds, triangular lattices of Ntrian = 9, 12, 21
sites seem to be most appropriate for our investigation
[59].

Results.—First we have a look at the magnetization
curve around the 7/9–plateau and the jump to satura-
tion, see Fig. 2. The size-independence of the height of
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Figure 3. Specific heat for B = 0.99Bsat for various finite-size
realizations of the KHAF. For N = 45, 54, 63, 72, where too
large Hilbert subspaces had to be neglected, only the low-
temperature part of the specific heat is displayed; it is virtu-
ally correct for all system sizes.

the jump is obvious. The width of the plateau, i.e., the
field region where the magnon-crystal phase can exist, is
about 4% of the saturation field and its finite-size depen-
dence is weak, cf. Ref. [35].

The finite-temperature transition to the magnon-
crystal phase can be driven either by temperature when
fixing B in the plateau region or by the magnetic field
when fixing T below the critical temperature Tc. The
transition is expected to belong to the universality class
of the classical two-dimensional Potts model [13, 14], one
indication being that the ground states coincide with
those of the HHA. This means that the transition is char-
acterized by a power-law singularity in the specific heat
C (critical exponent α = 1/3), see, e.g., [60, 61]. Thus
C(B, T ) is an appropriate quantity to detect the transi-
tion. For finite lattices the specific heat will not exhibit a
true singularity, rather we may expect a well-pronounced
peak in C that indicates the critical point. Furthermore,
the peak has to become sharper with increasing N .

First we study the temperature profile C(T ) for two
magnetic fields slightly below saturation, B = 0.990Bsat

(see Fig. 3) and B = 0.983Bsat (not shown), where we
present data for N = 27, 36, 45, 54, 63, 72. While the in-
fluence of N on the peak position Tmax is rather weak, the
increase of the height Cmax with growing N is significant
and the peaks are sharpest for N = 63 and N = 72.

Figure 4 shows the size dependence of Cmax for both
fields. However, we find that the increase of Cmax is
non-monotonic; e.g., Cmax is larger for N = 63 than for
N = 72. This might be attributed to geometric details
of the finite lattices. The overall scaling of the height of
the peak with N is in accordance with a possible phase
transition to a magnon crystal, i.e., it could be expected
that the height becomes a singularity for N → ∞, cf.
Fig. 8 in [14].

Figure 4. Maximum of the specific heat for two magnetic fields
of the plateau region at the respective magnon crystallization
temperature, compare Fig. 3. The solid curves according to
[62] are fits to data for those sizes that correspond to highly
symmetric lattices (marked by arrows) with a = 1.34005, b =
4.10176, c = −4.66802 for B = 0.983Bsat and a = 0.940541,
b = 2.471, c = −3.06195 for B = 0.990Bsat.

Figure 5. Specific heat vs. B at various low temperatures for
the KHAF with N = 63 (solid curves) and N = 36 (dashed
curves, same color for same temperature).

For the two-dimensional three-state Potts model, that
we consider to be in the same universality class, the
asymptotic behavior of Cmax/N for large N is given by
Cmax/N ∝ N (α/2ν)[62] with critical indices α = 1/3 and
ν = 5/6 [60, 61]. For small N substantial corrections
are to be expected [62]; corresponding scaling curves, fit-
ted to data points that are related to highly symmetric
triangular lattices, are displayed in Fig. 4.

Next we consider the field dependence of the specific
heat at low temperatures T/J = 0.005, 0.01, 0.02, see
Fig. 5, where we present data for N = 36 (dashed) and
N = 63 (solid curves). A corresponding figure based
on the HHA is given as Fig. 8 in [14]. There are two
peaks left and right of the minimum in C(B) at B = Bsat

which are related to the huge set of low-lying excitations
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(flat-band states in form of localized magnon states), cf.
[26, 27]. The peaks are sharp at very low T/J = 0.005
and become broader with increasing T . The height of
the maximum above Bsat is almost identical for N = 36
and N = 63; it does not correspond to a phase tran-
sition [26, 27]. However, in agreement with Fig. 3, for
T/J = 0.005 and 0.01 the height of the maximum below
Bsat is much larger for N = 63, while the position of this
maximum is almost identical.

As already argued above, the size dependence of the
maximum for B . Bsat is in accordance with a possi-
ble phase transition. It is also obvious from Fig. 5 that
already at T/J = 0.02 the relevant maximum is very
broad and the size dependence is changed, i.e., a possible
critical temperature is below this T value.

A more detailed comparison of our FTL data shown
in Fig. 5 with the corresponding HHA data shown as
Fig. 8 of [14] provides some insight in the limitations of
the HHA. The C(B) plot in Fig. 8 of [14] for T = 0.05J
exhibits a singularity at B ∼ 0.92Bsat. This means that
within the HHA (i) the magnon-crystal phase appears at
magnetic fields significantly outside (below) the M = 7/9
plateau and (ii) the transition temperature is drastically
overestimated.

To derive a tentative phase diagram we have calculated
C(T ) for a fine net of B values in the plateau region, see
Fig. 6(a), where we show the position Tmax of the low-T
peak of C(T ) vs B for N = 63 and N = 72. We also show
the HHA result Tc = 0.928(1 − B/Bsat) (straight black
line) [14]. First we notice that very close to the saturation
field (0.995Bsat / B ≤ Bsat) the HHA agrees well with
our data. When further decreasing the magnetic field,
our data for Tmax deviate significantly from the HHA
and Tmax exhibits a maximum at about B = 0.975Bsat,
i.e., near the midpoint of the plateau. When approach-
ing the lower endpoint Bend of the plateau (depicted by
the vertical lines in Fig. 6) Tmax decreases and we may
expect that it vanishes near Bend, where the magnon-
crystal ground state disappears. For finite systems, as
approaching Bend the relevant peak in C(T ) merges with
low-T finite-size peaks appearing just below Bend, this
way masking the true behavior expected for N →∞.

We mention that the general shape of the transi-
tion curve in Fig. 6(a) resembles the phase diagram of
the magnon crystallization of the fully frustrated bilayer
AFM [6, 42, 43]. Therefore, we may argue that the shape
of this curve is generic for two-dimensional spin models
possessing flat-band multi-magnon ground states.

The height of the maximum Cmax of C(T ) (supposed
to become a power-law singularity for N →∞) is shown
in Fig. 6(b) vs B for N = 63 and N = 72. The shape
of these curves is dome-like with a maximum near the
midpoint of the plateau. The unusual behavior at B =
Bsat is discussed in Ref. [26]).
Discussion.—We may conclude that our FTL data con-

firm the very existence of a low-temperature magnon-

Figure 6. Phase diagram: (a) Position Tmax and (b) height
Cmax of the low-T maximum (cf. Fig. 3) in dependence on B
for N = 63 and N = 72 for fields where the maximum can be
unambiguously detected. The vertical dashed lines mark the
repective edges of the magnetization plateau.

crystal phase just below the saturation field as conjec-
tured by the HHA [13, 14]. However, the B–T region
where this phase exists is not properly described by the
HHA.

Coming back to the “magnon crystallization” reported
in the experimental paper [1]: Here the authors interpret
the observed plateau states “as crystallizations of emer-
gent magnons localized on the hexagon of the kagomé
lattice”. This concept coincides with the present study
for the 7/9–plateau, but may differ for plateaus at smaller
magnetization, e.g., at 1/3 and 5/9. Although these lower
plateaus can be understood as magnon crystals formed at
T = 0, it still has to be investigated whether the physical
behavior for T > 0 differs from the scenario discussed in
our paper, since the huge set of flat-band multi-magnon
states determining the low-T thermodynamics near Bsat

is missing for these plateaus.
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antiferromagnet,” Nat. Commun. 10, 1229 (2019).

[2] Leon Balents, “Spin liquids in frustrated magnets,” Na-
ture 464, 199 (2010).

[3] Oleg A. Starykh, “Unusual ordered phases of highly frus-
trated magnets: a review,” Rep. Prog. Phys. 78, 052502
(2015).

[4] Philippe Mendels and Fabrice Bert, “Quantum kagome
frustrated antiferromagnets: One route to quantum spin
liquids,” Comptes Rendus Physique 17, 455 – 470 (2016).

[5] Lucile Savary and Leon Balents, “Quantum spin liquids,”
Rep. Prog. Phys. 80, 016502 (2017).

[6] Johannes Richter, Olesia Krupnitska, Vasyl Baliha, Taras
Krokhmalskii, and Oleg Derzhko, “Thermodynamic
properties of Ba2CoSi2O6Cl2 in a strong magnetic field:
Realization of flat-band physics in a highly frustrated
quantum magnet,” Phys. Rev. B 97, 024405 (2018).

[7] Andreas Mielke, “Ferromagnetic ground states for the
Hubbard model on line graphs,” J. Phys. A: Math. Gen.
24, L73–L77 (1991).

[8] Hal Tasaki, “Ferromagnetism in the Hubbard models
with degenerate single-electron ground states,” Phys.
Rev. Lett. 69, 1608–1611 (1992).

[9] Jürgen Schnack, Heinz-Jürgen Schmidt, Johannes
Richter, and Jörg Schulenburg, “Independent magnon
states on magnetic polytopes,” Eur. Phys. J. B 24, 475
(2001).

[10] Jörg Schulenburg, Andreas Honecker, Jürgen Schnack,
Johannes Richter, and Heinz-Jürgen Schmidt, “Macro-
scopic magnetization jumps due to independent magnons
in frustrated quantum spin lattices,” Phys. Rev. Lett. 88,
167207 (2002).

[11] S. A. Blundell and M. D. Núñez-Regueiro, “Quantum
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