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1 Introduction

The synthesis of molecular magnets has undergone rapidga®m recent yearsl[d, [2,[3,[4, 5,
6]. Each of the identical molecular units can contain as fevima and up to several dozens
of paramagnetic ions (“spins”). One of the largest pararaigmolecules synthesized to date,
the polyoxometalat¢Mo,Fes} [[7] contains 30 iron ions of spin = 5/2. Although these
materials appear as macroscopic samples, i. e. crystalsvaitgrs, the intermolecular mag-
netic interactions are utterly negligible as compared &itttramolecular interactions. There-
fore, measurements of their magnetic properties reflechljnansemble properties of single
molecules.

Their magnetic features promise a variety of applicatianphysics, magneto-chemistry, bi-
ology, biomedicine and material sciences[|1,13, 4] as weihagiantum computing [8, 9, 10].
The most promising progress so far is being made in the fiedpiofcrossover substances using
effects like “Light Induced Excited Spin State TrappingESST)” [11].

It appears that in the majority of these molecules the laedlsingle-particle magnetic moments
couple antiferromagnetically and the spectrum is rathdirdescribed by the Heisenberg model
with isotropic nearest neighbor interaction sometimes@ermged by anisotropy terms 12,113,
14,115/ 16]. Thus, the interest in the Heisenberg model, misiknown already for a long time
[17], but used mostly for infinite one-, two-, and three-dimsi@nal systems, was renewed by the
successful synthesis of magnetic molecules. Studying spicharrays focuses on qualitatively
new physics caused by the finite size of the system.

Several problems can be solved with classical spin dynamich turns out to provide accu-
rate quantitative results for static properties, such agnetc susceptibility, down to thermal
energies of the order of the exchange coupling. Howevessidal spin dynamics will not be
the subject of this chapter, it is covered in many publication Monte-Carlo and thermostated
spin dynamics. One overview article which discusses aabspin models in the context of
spin glasses is given by Ref. ]18].

Theoretical inorganic chemistry itself provides severatmods to understand and describe
molecular magnetism, see for instance Ref! [19]. In thigptdrawe would like to focus on
those subjects which are of general interest in the confakibook.

2 Substances

From the viewpoint of theoretical magnetism it is not so imgaot which chemical structures
magnetic molecules actually have. Nevertheless, it is wrdgresting to note that they appear
in almost all branches of chemistry. There are inorganicmaig molecules like polyoxometa-
lates, metal-organic molecules, and purely organic magnetlecules in which radicals carry
the magnetic moments. It is also fascinating that such mit#eacan be synthesized in a huge
variety of structures extending from rather unsymmetrigcttires to highly symmetric rings.
One of the first magnetic molecules to be synthesized was 24aektate [[20] (M) —
[Mn1,0,2(CH3CO0)4(H,0),] — which by now serves as the “drosophila” of molecular mag-
netism, see e. gl[L, 2),14,122]23]. As shown in Eig. 1 the nubdsoccontains four Mn(1V) ions
(s = 3/2) and eight Mn(lll) ions § = 2) which are magnetically coupled to give &h= 10
ground state. The molecules possesses a magnetic anisattaph determines the observed
relaxation of the magnetization and quantum tunneling\attéonperatures [21, 24].

Although the investigation of magnetic molecules in geherand of Mn-12-acetate in partic-
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Fig. 1. Structure of Mn-12-acetate: On the l.h.s. the Mn ions araated by large spheres, on
the r.h.s. the dominant couplings are given. With friendiynpission by G. Chaboussant.

ular — has made great advances over the past two decadestilitaschallenge to deduce the
underlying microscopic Hamiltonian, even if the Hamiltaniis of Heisenberg type. Mn-12-
acetate is known for about 20 years now and investigatedhbkether magnetic molecule, but
only recently its model parameters could be estimated vaitisfying accuracy [25, 26].

Fig. 2: Structure of a chromium-4 and a chromium-8 ring. The Cr iores@depicted by large
spheres.

Another very well investigated class of molecules is givesiin rings among which iron rings
(“ferric wheels”) are most popular [27, 28,129, 30/ 81} 32, 34]. Iron-6 rings for instance
can host alkali ions such as lithium or sodium which allowsntodify the parameters of the
spin Hamiltonian within some range J16,135]. Another reatiian of rings is possible using
chromium ions as paramagnetic centers. Fifire 2 showsihetgte of two rings, one with
four chromium ions the other one with eight chromium ions.

A new route to molecular magnetism is based on so-calleddfafa structures which allow the
synthesis of truly giant and highly symmetric spin array$ie Tnolecule{Mo-sFey} [[7, [3€]
containing 30 iron ions of spin = 5/2 may be regarded as the archetype of such structures.
Figure[3 shows on the I.h.s. the inner skeleton of this mdéeedre and O-Mo-O bridges — as
well as the classical ground state|[37] depicted by arrowthem.h.s. [[35].

One of the obvious advantages of magnetic molecules istibanhtgnetic centers of different
molecules are well separated by the ligands of the moleculegrefore, the intermolecular
interactions are utterly negligible and magnetic molesgken be considered as being indepen-
dent. Nevertheless, it is desirable to build up nanostradimaterials consisting of magnetic
molecules in a controlled way. Figurk 4 gives an example ddiagr structure consisting of lay-
ers of{Mo,Fey } [38,[39] which has been synthesized recently together wiitiear structure
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Fig. 3: Structure of{Mo,;Fey, }, a giant Keplerate molecule where 30 iron ions are placed at
the vertices of an icosidodecahedron. L.h.s.: sketch otHieenical structure, r.h.s. magnetic
structure showing the iron ions (spheres), the nearesthimginteractions (edges) as well as
the spin directions in the classical ground state. The ddghangle on the I.h.s. corresponds
to the respective triangle on the r.h.s.. With friendly pession by Paul Kgerler [3€].

Fig. 4. Square lattice of Mo;;Fe3 }-molecules: Each molecule is connected with its four
nearest neighbors by an antiferromagnetic coupling. Witnfdly permission by Paul&gerler
[38,[39].

consisting of chains ofMoz,Fe;} [40]. These systems show new combinations of physical
properties that stem from both molecular and bulk effects.

Many more structures than those sketched above can be sipgtienowadays and with the
increasing success of coordination chemistry more areoyatime. The final hope of course is
that magnetic structures can be designed according to sieedenagnetic properties. But this
goal is not close at all, it requires further understandihthe interplay of magneto-chemistry
and magnetic phenomena. One of the tools used to clarify guestions is density functional
theory or otheab initio methods([41], 42, 43, 44, 45,146].

3 Theoretical techniquesand results

3.1 Hamiltonian

It appears that in the majority of these molecules the ictera between the localized single-
particle magnetic moments can be rather well describedéideisenberg model with isotropic
(nearest neighbor) interaction and an additional anipgtterm [12[13[ 14, 15, 16]. Dipolar

interactions are usually of minor importance. It is alsafdthat antiferromagnetic interactions
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are favored in most molecules leading to nontrivial grouiades.

Heisenberg Hamiltonian

For many magnetic molecules the total Hamilton operatorb&awritten as

fv[ = gHeisenberg“‘ ganisotropy‘F EIZeeman (l)

];[Heisenberg = - Z Jqu(“) : S(U) (2)
N

[;[anisotropy = - Z du(g(u) : 5(“))2 (3)
u=1

Hzeeman = gﬂBg : S 4)

The Heisenberg Hamilton operatan the form given in Eq.[{2) is isotropic],, is a symmet-
ric matrix containing the exchange parameters betweers sisites: andv. The exchange
parameters are usually given in units of energy, dnd< 0 corresponds to antiferromagnetic,
Juw > 0 to ferromagnetic couplirtg The sum in[(R) runs over all possible tuplesv). The
vector operators(u) are the single-particle spin operators.

The anisotropy term$1(3) usually simplify to a large extefod instance for spin rings, where
the site-dependent directioaku) are all equal, e. ge{u) = €, and the strength as well is the
same for all sited,, = d.

The third part (Zeeman term) in the full Hamiltonian desestihe interaction with the exter-
nal magnetic field. Without singe-site apdsalue anisotropy the direction of the field can be
assumed to be along theaxis which simplifies the Hamiltonian very much.

Although the Hamiltonian looks rather simple, the eigenegiroblem is very often not solvable
due to the huge dimension of the Hilbert space or becausaithber of exchange constants is
too big to allow an accurate determination from experimletid#a. Therefore, one falls back
to effective single-spin Hamiltonians for molecules wittnAzero ground state spin and a large
enough gap to higher-lying multiplets.

Single-spin Hamiltonian

For molecules like M, and Fg@ which possess a high ground state spin and well separated
higher lying levels the following single-spin Hamiltonian

H o= D DSl ©)

is appropriate, see e. g. Ref. [23]. The first two terms of taenHton operator{ represent
the anisotropy wheread’ is the Zeeman term for a magnetic field along thexis. The
total spin is fixed, i. e.S = 10 for Mn;, and Fg, thus the dimension of the Hilbert space is
dim(H) =25 + 1.

The effective Hamiltoniar{5) is sufficient to describe therlying spectrum and phenomena
like magnetization tunneling. Sindd’ does not commute with the-component of the total

1Operators are denoted by a tilde.
20ne has to be careful with this definition since it varies frauthor to author
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spin$., every eigenstate\/ ) of S, i. e. the states with good magnetic quantum nunider
is not stationary but will tunnel through the barrier aneafialf the period be transformed into

| =M ).

3.2 Evaluating the spectrum

The ultimate goal is to evaluate the complete eigenvaluetgpa of the full Hamilton operator
@@ as well as all eigenvectors. Since the total dimensiothefHilbert space is usually very
large, e. g. dinfi{) = (2s + 1)V for a system ofV spins of equal spin quantum numbgra
straightforward diagonalization of the full Hamilton matis not feasible. Nevertheless, very
often the Hamilton matrix can be decomposed into a blockcsire because of spin symme-
tries or space symmetries. Accordingly the Hilbert spade lwa decomposed into mutually
orthogonal subspaces. Then for a practical evaluation th\size of the largest matrix to be
diagonalized is of importance (relevant dimension).

Product basis

The starting point for any diagonalization is the produdi®ani ) = |mq,...,my,...,my)
of the single-particle eigenstates of all(u)

so(w) [ma, ... My, my ) =My M, My, My ) (7)

These states are sometimes called Ising states. They spéuiltHilbert space and are used to
construct symmetry-related basis states.

Symmetries of the problem

Since the isotropic Heisenberg Hamiltonian includes ordgaar product between spins, this
operator is rotationally invariant in spin space, i. e. intoutes withS and thus also witly',

=

fNIHeisenberg §2 =0 , fNIHeisenberg §z] =0. (8)

In a case where anisotropy is negligible a well-adaptedsbashus given by the simultaneous
eigenstates S, M, «) of 52 andsS., wherea enumerates those states belonging to the sme
and M [47,/48]. Since the applled magnetic field can be assumeditd pdo z- dlrectlon for
vanishing anisotropy the Zeeman term automatically alsoroates withH yeisenberg § , and
S.. SinceM is a good quantum number the Zeeman term does not need tolbeddan the
diagonalization but can be added later.

Besides spin symmetries many molecules possess spatialedyi®s. One example is given by
spin rings which have a translational symmetry. In genémaklymmetries depend on the point
group of the molecule; for the evaluation of the eigenvapectrum its irreducible representa-
tions have to be used [13,116,147]. Thus, in a case with awmigptone looses spin rotational
symmetries but one can still use space symmetries. Withosbiopy one even gains a further
reduction of the relevant dimension.
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Dimension of the problem

The following section illuminates the relevant dimensiassuming certain symmetries
If no symmetry is present the total dimension is just

dim(H) =[] (2s(w) +1) (9)

for a spin array ofV spins with various spin quantum numbers. In many cases thegpntum
numbers are equal resulting in a dimension of the total Hilkgace of dinfiH) = (2s + 1),
If the Hamiltonian commutes witH, then/ is a good quantum number and the Hilbert space

'H can be divided into mutually orthogonal subspaegd/)

+Smax N

H= @B HM). Swax=)_ s(u). (10)

M=—Smax u=1

For given values of\/, N and of all s(u) the dimension ding()/)) can be determined as
the number of product stated (7), which constitute a basig(it/), with > m, = M. The
solution of this combinatorial problem can be given in ctbéam [48]

) 1 d Smax—M N 1— 225(1’)4—1
dim (H(M)) = o= )1 [(@ ) L[l — B (11)
For equal single-spin quantum numbe(fs) = --- = s(N) = s, and thus a maximum total

spin quantum number i« = N's, () simplifies to

dim(H(M)) = F(N.25+1,Sma— M)  with (12)
/] N\ /N —1+v—npu
f(Noy) = S (-1 ( ) ( ) |
; n N -1

In both formulae[(T11) and_(12)}/ may be replaced by)M | since the dimension of{(M)
equals those of{(—M). |v/u] in the sum symbolizes the greatest integer less or equ&lito
Eq. (I2) is known as a result of de Moivie [49].

If the Hamiltonian commutes witls? and all individual spins are identical the dimensions of

the orthogonal eigenspacef S, M) can also be determined. The simultaneous eigenspaces
H(S, M) of S* and S, are spanned by eigenvectors Bt The one-dimensional subspace

H(M = Smax) = H(Smax Smax), €Specially, is spanned b2 ), a state called magnon vacuum.
The total ladder operators (spin rising and lowering opestare

STF=8,+iS,. (13)

For S > M, S~ maps any normalized/-eigenstatec (S, M + 1) onto anH-eigenstate

€ H(S, M) with norm/S(S + 1) — M(M + 1).
For0 < M < Smax H(M) can be decomposed into orthogonal subspaces

H(M) = H(M, M) & S~H(M + 1) (14)

SWork done with Klaus Barwinkel and Heinz-Jiirgen Schiittijversitat Osnabriick, Germany.
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with

STHM+1)= @ H(S. M). (15)

S>M+1

In consequence, the diagonalization/bfin H has now been traced back to diagonalization in
the subspaceX (S, S), the dimension of which are fdf < Spmax

dim (H(S, S)) = dim (H(M = 8)) — dim (H(M = S + 1)) (16)

and can be calculated according[fal (12).

As an example for space symmetries | would like to discussrdreslational symmetry found
in spin rings. The discussed formalism can as well be apptieather symmetry operations
which can be mapped onto a translation. Any such transl&icepresented by the cyclic shift
operator]’ or a multiple repetition’ is defined by its action on the product bagis (7)

I‘m17"'7mN—17mN>:‘mN7m17"'7mN—1>- (17)

The eigenvalues df' are the/N-th roots of unity

ok
zk:exp{—i%}, k=0,....N—1,  pp=21k/N, (18)

where k will be called translational (or shift) quantum number andmomentum quantum
number or crystal momentum. The shift operafarommutes not only with the Hamiltonian but
also with total spin. Any (S, M) can therefore be decomposed into simultaneous eigenspaces
H(S, M, k) of 2, S. andT.

In the following we demonstrate how an eigenbasis of tland7’ can be constructed, this
basis spans the orthogonal Hilbert spatg3/, k). How total spin can be included by means

of an irreducible tensor operator approach is describedis.RL3 16| 47].

A special decomposition df{ into orthogonal subspaces can be achieved by starting gth t
product basis and considering the equivalence relation

W) =1o) e [v)=T"[¢), ne{l,2,...,N} (19)

for any pair of states belonging to the product basis. Thevatgnce relation then induces
a complete decomposition of the basis into disjoint subsets the equivalence classes. A
“cycle” is defined as the linear span of such an equivalerassaf basis vectors. The obviously
orthogonal decomposition @{ into cycles is compatible with the decompositiorfointo the
variousH (M ). Evidently, the dimension of a cycle can never excééd Cycles are called
“proper cycles” if their dimension equals, they are termed “epicycles” else. One of tNe
primary basis states of a proper cycle may arbitrarily beoteshas

\¢1>:\m1,...,mN) (20)

and the remaining ones may be enumerated as

[Gnsr) =T" 1), n=1,2,... ,N—1. (21)
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The cycle under consideration is likewise spanned by thesta

1 plly 2k v
) =75 2 (¢FT) e (22)

which are eigenstates @f with the respective shift quantum number Consequently, every

k occurs once in a proper cycle. An epicycle of dimensioms spanned byD eigenstates of

T with each of the translational quantum numbers- 0, N/D, ..., (D — 1)N/D occurring
exactly once.

As arule of thumb one can say that the dimension of &acl, k) is approximately dint{ (M, k)) ~
dim(H(M))/N. An exact evaluation of the relevant dimensions for spigsinan be obtained
from Ref. [48].

Exact diagonalization

If the relevant dimension is small enough the respective ilammatrices can be diagonalized,
either analytically([50, 51, 48] or numerically, see e.[d,[53/54| 55, 113, 56, 57, 47].

Again, how such a project s carried out, will be explainethmine help of an example, a simple
spin ring with N = 6 ands = 1/2. The total dimension is difft{) = (2s + 1) = 64. The
Hamilton operatoif{2) simplifies to

N
];[Heisenberg = _2JZ g(u) : g(u + 1) , N+1=1. (23)
u=1

We start with the magnon vacuun?) = |+ + 4+ + ++) which spans the Hilbert space
H(M) with M = Ns = 3. “+” are shorthand notations for = +1/2. The dimension of the
subspace dif{ (M = Ns)) is one and the energy eigenvaludis = —2JNs* = —3J. |Q)

is an eigenstate of the shift operator with= 0. SinceS is also a good quantum number in this
example| ©2) has to be an eigenstate@?, too, the quantum number is= Ns.

The next subspacK (M) with M = Ns — 1 = 2 is spanned by — + + + ++ ) and the five
other vectors which are obtained by repetitive applicatbi’. This subspace obviously has
the dimensionV, and the cycle spanned By’ | — + + + ++),n = 0,..., N — 1 is a proper
one. Therefore, each quantum number arises once. The respective eigenstaiésan be
constructed according to Eq.{22) as

=2

(M =2k) = \/% () 1=+ ++ 44 (24)
All subspacesH (M, k) have dimension one. Sincg™ |2) is a state belonging t&{(M =
Ns — 1) with the samé:-quantum number a$(? ) itis clear that| M = 2,k = 0) is a already
an eigenstate ofz with S = Ns. The other| M = 2,k # 0) must haveS = Ns — 1.
The next subspacg/(M) with M = Ns — 2 = 1 is spanned by three basic vectors, i. e.
|——++++), |-+—+++), | - ++ — ++) and the repetitive applications @f onto
them. The first two result in proper cycles, the third vedter+ + — ++ ) results in an epicy-
cle of dimension three, thus for the epicycle we find ohnlyuantum numbers = 0, 2, 4. The
energy eigenvalues found in the subspigd/ = Ns—1) (“above”) must reappear here which

i
o

v
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again allows to address ghquantum number to these eigenvalues. The dimension of the su

spaceH (M = 1) is 15, the dimensions of the subspaéés\/, k) are 3¢ = 0), 2 (k = 1), 3
(k=2),2(k=23),3(k=4),and 2 ¢ = 5).

The last subspace which has to be considered belongs+o0 and is spanned by— — — + ++), | — — + — ++
and repetitive applications @t. Its dimension is 20. Her¢— 4+ — + —+ ) leads to an epicycle

of dimension two.

The Hamilton matrices in subspaces with < 0 need not to be diagonalized due to thig

symmetry, i. e. eigenstates with negative can be obtained by transforming all individual

m, — —m,. Summing up the dimensions of &l(1/) then yieldsl +6+154+20+15+6+1 =

64 /.

| N=6, s=1/2, AF | | N=6, s=1/2, AF

E/NI
|
E/NI

S k

Fig. 5: Energy eigenvalues as a function of total spin quantum nurfilgeh.s.) andk (r.h.s.).

Figure[® shows the resulting energy spectrum both as a amdfi total spinS as well as a
function of translational quantum number

Projection and L anczos method

Complex hermitian matrices can be completely diagonalimederically up to a size of about
10,000 by 10,000 which corresponds to about 1.5 Gigabyteoéssary RAM. Nevertheless,
for larger systems one can still use numerical methods tluatealow-lying energy levels and
the respective eigenstates with high accuracy.

A simple method is the projection methad [55] which rests o multiple application of the
Hamiltonian on some random trial state.

To be more specific let's approximate the ground state ofrasg@tem. We start with a random
trial state| ¢, ) and apply an operator which “cools” the system. This opeiatgiven by the
time evolution operator with imaginary time steps

[¢1) = exp{—e&l}wo). (25)

Expanding | ¢ ) into eigenstateg ) of the Hamilton operator elucidates how the method
works

161) = Sexp{—<E} [v)(v|én) (26)
= oxp{—cBo} Y oxp{~<(E, - Ey)} [v){v]do). (27)

Relative to the ground state component all other comporagatexponentially suppressed. For
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practical purposes equatidn26) is linearized and reeelssused

0)
<Q~Si+1 | Cgi-i-l >

i) = (1=cH) l6), léu)= (28)

¢ has to be small enough in order to allow the linearizatiorheféxponential. It is no problem
to evaluate several higher-lying states by demanding tiet have to be orthogonal to the
previous ones. Restricting the calculation to orthogorgeespaces yields low-lying states in
these eigenspaces which allows to evaluate even more elegrly. The resulting states obey
the properties of the Ritz variational principle, i. e. tHeyabove the ground state and below
the highest one.

Another method to partially diagonalize a huge matrix wasppsed by Cornelius Lanczos in
1950 [58[59]. Also this method uses a (random) initial vedtdahen generates an orthonormal
system in such a way that the representation of the operéiatevest is tridiagonal. Every
iteration produces a new tridiagonal matrix which is by oo and one column bigger than
the previous one. With growing size of the matrix its eigénga converge against the true ones
until, in the case of finite dimensional Hilbert spaces, tigemvalues reach their true values.
The key point is that the extremal eigenvalues convergesrathickly compared to the other
ones [60]. Thus it might be that after 300 Lanczos steps tbargt state energy is already
approximated to 10 figures although the dimension of the nyidg Hilbert space id08.

A simple Lanczos algorithm looks like the following. Onerssavith an arbitrary vectof vy ),
which has to have an overlap with the (unknown) ground staite next orthogonal vector is
constructed by application @f and projecting out the original vectgr), )

[ 1) = (1= [vo)(¢o|) H o) = H[vo) — (ol H[ho)]v0), (29)
which yields the normalized vector
| ¥1)
V) = —F—es. (30)
S AR
Similarly all further basis vectors are generated
Vi) = (U= [ ) (| = (1 (W1 |) H [r) (31)
= Hlw) = (bn [ H | 9n) [thr) = (pr | H [t ) | 1)
and /
s ) = | Vs ) (32)

VU 1)

The new Lanczos vector is by construction orthogonal towedrevious ones. Without proof
we repeat that it is then also orthogonal to all other previcanczos vectors. This constitutes
the tridiagonal form of the resulting Hamilton matrix

Toy= (| H|y;)  with  T,=0 if |i—j>1. (33)

The Lanczos matrif’ can be diagonalized at any step. Usually one iterates thieaueintil a
certain convergence criterion is fulfilled.
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The eigenvectors off can be approximated using the eigenvectass) of T

n

X ) =D (il ) 1) (34)

1=0

where . labels the desired energy eigenvalue, e. g. the ground etatgy. n denotes the
number of iterations.

The simple Lanczos algorithm has some problems due to liraiteuracy. One problem is that
eigenvalues may collapse. Such problems can be solved wite refined formulations of the
method [59].

DMRG

The DMRG technique ][61] has become one of the standard noaheniethods for quantum
lattice calculations in recent yeails [62] 63]. Its basiaide the reduction of Hilbert space
while focusing on the accuracy of a target state. For thip@ss the system is divided into
subunits — blocks — which are represented by reduced sets states. The dimensionof
the truncated block Hilbert space is a major input paranadtdre method and to a large extent
determines its accuracy.

DMRG is best suited for chain-like structures. Many acaurasults have been achieved by
applying DMRG to various (quasi-)one-dimensional systfgds56,6%]. The best results were
found for the limit of infinite chains with open boundary catiwhs. It is commonly accepted
that DMRG reaches maximum accuracy when it is applied taesystwith a small number of
interactions between the blocks, e. g. systems with onlyas¢aeighbor interaction [62].

It is nota priori clear how good results for finite systems like magnetic mdEsaré. Such
systems are usually not chain-like, so in order to carry ddR® calculations a mapping onto
a one-dimensional structure has to be perforrhed [62]. Shmegpin array consists of a count-
able number of spins, any arbitrary numbering is already ppimg onto a one-dimensional
structure. However, even if the original system had onlyrestaneighbor exchange, the new
one-dimensional system has many long-range interactiepsrdling on the way the spins are
enumerated. Therefore, a numbering which minimizes longeanteractions is preferable.
Fig.[8 shows the graph of interactions for the moledW®-,Fe;, } which we want to consider
as an example in the following [56].

Fig. 6: One-dimensional projection of the icosidodecahedron!lities represent interactions.

For finite systems a block algorithm including sweeps, wiécsimilar to the setup in White’s

original article [61], has turned out to be most efficient. oltidocks are connected via two
single spin sites, these four parts form the superblock sp&lF

For illustrative purposes we use a simple Heisenberg Hanidh, compare{2). The Hamilto-
nian is invariant under rotations in spin space. Therefibre total magnetic quantum number

4Work done with Matthias Exler, Universitat Osnabriicky@any.
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1 2--- p p+l -+« N-1N
00+ 00 @@00 00|

Fig. 7: Block setup for DMRG “sweep” algorithm: The whole system\ogpins constitutes
the superblock. The spidg, 2,. .., p} belong to the left block, the other spifis+ 1,..., N}
to the right block.

Fig. 8. Two-dimensional projection of the icosidodecahedron sikeenumbers are those used
in our DMRG algorithm.

M is a good quantum number and we can perform our calculatieacéh orthogonal subspace
H(M) separately.
Since it is difficult to predict the accuracy of a DMRG caldida, it is applied to an exactly
diagonalizable system first. The most realistic test sy$tetme use of DMRG fo{ Moz, Fe; }
is the icosidodecahedron with spins= 1/2. This fictitious molecule, which possibly may be
synthesized with vanadium ions instead of iron ions, hassdme structure afMo,Fey},
but the smaller spin quantum number reduces the dimensitiredflilbert space significantly.
Therefore a numerically exact determination of low-lyimyels using a Lanczos method is
possible[[67]. These results are used to analyze the plaiggsibility and the accuracy of the
method.
The DMRG calculations were implemented using the enunarati the spin sites as shown in
Figs.[6 and8. This enumeration minimizes the average ictieralength between two sites.
In Fig.[@ the DMRG results (crosses) are compared to the greaggnvalues (circles) deter-
mined numerically with a Lanczos methad[67] 66]. Very gogdeament of both sequences,
with a maximal relative error of less than 1% is found. Altgbuhe high accuracy of one-
dimensional calculations (often with a relative error of thrder of10-%) is not achieved, the
result demonstrates that DMRG is applicable to finite 2D sgstems. Unfortunately, increas-
ing m yields only a weak convergence of the relative error, whathafined relative to the width
of the spectrum

¢ (m) _ Epmra (m) — Ey

|EgY — B

(35)

The dependence for a quasi two-dimensional structure ikedosidodecahedron is approx-
imately proportional tol /m (see Fig[Il0). Unfortunately, such weak convergence isachar
teristic for two-dimensional systems in contrast to ona&hsional chain structures, where the
relative error of the approximate energy was reported taylegponentially withm [61]. Nev-
ertheless, the extrapolated ground state energy forl /2 deviates only by = 0.7 % from the
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(O exact eigenvalues

20 |f DMRG calculation
— fit to rotational bangd

Fig. 9: Minimal energy eigenvalues of tke= 1/2 icosidodecahedron. The DMRG result with
m = 60 is depicted by crosses, the Lanczos values by circles. Tagaoal band is discussed
in subsection314.

ground state energy determined with a Lanczos algorithm.
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Fig. 10: Dependence of the approximate ground state energy on the®@pdRametem. Ej
is the true ground state energy in the case 1/2 and the extrapolated one fer= 5/2.

The major result of the presented investigation is that tNHRIG approach delivers acceptable
results for finite systems like magnetic molecules. Newess, the accuracy known from one-
dimensional systems is not reached.

Spin-coherent states

Spin-coherent states [68] provide another means to eitbatr & spin system exactly and inves-
tigate for instance its dynamics |69] or to use spin cohesgates in order to approximate the
low-lying part of the spectrum. They are also used in conaratith path integral methods. In
the following the basic ideas and formulae will be presented

The obvious advantage of spin-coherent states is that tlosyde a bridge between classical
spin dynamics and quantum spin dynamics. Spin coheremisséaé very intuitive since they
parameterize a quantum state by the expectation value afpineoperator, e. g. by the two
angles which represent the spin direction.
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Spin coherent statels: ) are defined as

|z) = 1—i—|z\ Z ()z”\s,m:s—p), zeC. (36)

In this definition spin-coherent states are characterigatidospin lengths and a complex value
z. The stated(36) are normalized but not orthogonal

(1 + y*Z)ZS

= L S T e

Spin-coherent states provide a basis in single-spin Hilpce, but they form an overcomplete
set of states. Their completeness relation reads

_ 2s5+1 s |2)(z| o
_ /d Gl = dRe(:) dinm(s). 37)

The intuitive picture of spin-coherent states becomesalsvif one transforms the complex
numberz into angles on a Riemann sphere

z=tan(0/2)e”, 0<f<7m, 0<¢<2r. (38)

Thus, spin-coherent states may equally well be represédytédo polar angleg and¢. Then
the expectation value of the spin operagas simply

sin () cos(¢)
(0,01510,0) = s|sin(d)sin(e) | . (39)
cos(0)
Using [38) the definition of the staté®), ¢ ) which is equivalent to EqL(B6) is then given by

2s

10.6) = > (2;) [cos(8/2)]% 7 [¢¥sin(0/2)]" | s,m = s — p) (40)

p=0
and the completeness relation simplifies to

25 +1
1= 25 [anene.0l (@1)

Product states of spin-coherent states span the many-sibiert-space. A classical ground

state can easily be translated into a many-body spin-cohstate. One may hope that this
state together with other product states can provide a Lsetfof linearly independent states in
order to approximate low-lying states of systems which acehig to handle otherwise. But it

is too early to judge the quality of such approximations.

3.3 Evaluation of thermodynamic observables

For the sake of completeness we want to outline how basiawdises can be evaluated both
as function of temperatur€ and magnetic field3. We will assume thafli[, §Z] = 0 for this
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part, so that the energy eigenvectdrg) can be chosen as simultaneous eigenvectors, of
with eigenvaluesZ, (B) and M,,. The energy dependence bf (B) on B is simply given by
the Zeeman term. Iff andS. do not commute the respective traces for the partition fanct
and thermodynamic means have to be evaluated starting freimgeneral definitions.

The partition function is defined as follows

Z2(T,B) = tr{ BH} =Y e, (42)

14

Then the magnetization and the susceptibility per molecafebe evaluated from the first and
the second moment df,

_ 1 —BH

M(T,B) = —Etr{guBSze } (43)
_ QMB Z M, e BE.(B)
- aM(T,B)

xX(T,B) = 9B (44)

(QMB)2 2 E,(B) E,(B)
:W{ ZMeﬁ( (ZMe5(>}.

In a similar way the internal energy and the specific heat eaéuated from first and second
moment of the Hamiltonian

U(T,B) = —%tr{ge‘ﬁg} (45)
= _% ZEV(B)e—ﬁEu(B)
O(T,B) = % (46)

— ﬁ{%g(@(m) g P (B —< ZE g B >> }

3.4 Propertiesof spectra

In the following chapter | am discussing some propertiehefdpectra of magnetic molecules
with isotropic and antiferromagnetic interaction.

Non-bipartite spin rings

With the advent of magnetic molecules it appears to be pleswbsynthesize spin rings with
an odd number of spins. Although related to infinite spin siagd chains such systems have
not been considered mainly since it does not really mattetidr an infinite ring has an odd or
an even number of spins. In addition the sign rule of Marsdradl Peierls[[70] and the famous
theorems of Lieb, Schultz, and Mattis [71] 72] provided alie tools for the understanding of
even rings which have the property to be bipartite and are tlom-frustrated. These theorems
explain the degeneracy of the ground states in subsgaces as well as their shift quantum
numberk or equivalently crystal momentum quantum numbet= 27k /N.
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s N

2| 3| 4 5| 6| 7| 8] 9| 10

15] 05| 1]0.747][0.934] 0.816] 0.913] 0.844[ 0.903] E,/(NJ)
L1 4| 1 4 1 4 1 4 1| deg

o 12| o 12| 0| 12| 0| 12| 0|S

1| 1,2| o| 1,4 3| 2,5/ 0| 27| 5|k

40| 3.0[20]2.236]1.369] 2.098| 1.045| 1.722| 0.846| AE/|J]
13 4| 3 2 3 8 3 8 3| deg

1| 322 1| 12 1| 372 1| 372 1|8

0 0| 2 0 0| 1,6/ 4| 36| 0]k

4 2| 3]2612]2.872]2.735] 2.834| 2.773[ 2.819| Eo/(NJ)
1| 1 1| 1 1 1 1 1 1 1| deg

0 0| 0 0 0 0 0 0 0|S

0 0| 0 0 0 0 0 0 0|k

40| 20[20]1.9291.441] 1.714| 1.187| 1.540| 1.050| AE/|J]
1| 3 9| 3 6 3 6 3 6 3| deg

1 1| 1 1 1 1 1 1 1|8

110,1,2| 2| 2,3 3| 34| 4| 45 5|k

Table 1. Properties of ground and first excited state of AF Heisenbiexgs for variousN and
s: ground state energy,, gapAFE, degeneracyleg, total spinS and shift guantum numbér

Nowadays exact diagonalization methods allow to evalugenealues and eigenvectors &f
for small even and odd spin rings of various numbgrsf spin sites and spin quantum numbers
s where the interaction is given by antiferromagnetic ndaregghbor exchangé [52, 53,154 73,
74,[75]. Although Marshall-Peierls sign rule and the thew®f Lieb, Schultz, and Mattis do
not apply to non-bipartite rings, i. e. frustrated ringshnatdd /V, it turns out that such rings
nevertheless show astonishing regularitidsnifying the picture for even and oddl, we find
for the ground state without exceptian [74] 75]:

1.

o o M w0 D

The ground state belongs to the subspdcg) with the smallest possible total spin quan-
tum numbersS; this is eitherS = 0 for N -s integer, then the total magnetic quantum
number)/ is also zero, o5 = 1/2 for N-s half integer, then\/ = +1/2.

If NV-sis integer, then the ground state is non-degenerate.

If V-sis half integer, then the ground state is fourfold degemerat

If s is integer orN - s even, then the shift quantum numbekis- 0.

If s is half integer andV - s odd, then the shift quantum number turns out td:be N/2.

If N-sis half integer, therk = |(N + 1)/4] andk = N — [(N + 1)/4] is found.
| (N +1)/4] symbolizes the greatest integer less or equélMor 1) /4.

SWork done with Klaus Barwinkel and Heinz-Jiirgen Schiittijversitat Osnabriick, Germany.
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S N
2| 3| 4 5| 6| 7| 8 9 10
75| 35| 6| 4973| 5798| 5338 5732 5.477| 5704 | Ey/(NJ)
3 1 4| 1 4 1 4 1 4 1 | deg
0 12| 0 1/2 0 1/2 0 1/2 0| S
1/ 1,2 0 1,4 3 2,5 0 2,7 5|k
40| 3.0[20]| 2629 1.411| 2.171| 1.117| 1.838| 0.938' | AE/|J|
3 3 16| 3 8 3 8 3 8 3| deg
1 32| 1 3/2 1 3/2 1 3/2 1|8
0(0,1,2| 2 2,3 0 1,6 4 3,6 0|k
12 6| 10| 8.456| 9.722| 9.045| 9.630| 9.263'" | 9.590'" | Ey/(N.J)
2 1 1] 1 1 1 1 1 1 1 | deg
0 0| O 0 0 0 0 0 0| S
0 0| O 0 0 0 0 0 0|k
40| 20[20| 1.922| 1.394| 1.652| 1.091| 1.431% | 0.906' | AE/|J|
2 3 9| 3 6 3 6 3 6 3| deg
1 1] 1 1 1 1 1 1 1|8
1(0,1,2| 2 2,3 3 3,4 4 4,5 5|k
17.5| 8.5| 15| 12.434| 14.645| 13.451| 14.528' | 13.848'" | 14.475' | Ey/(NJ)
2 1 4| 1 4 1 4 1 4 1 | deg
0 12| 0 1/2 0 1/2 0 1/2 0| S
1/ 1,2 0 1,4 3 2,5 0 2,7 5|k

Table 2: Properties of ground and first excited state of AF Heisenbvergs for various N
and s (continuation): ground state enerdy,, gapAE, degeneracyleg, total spinS and shift
guantum numbek. T — O. Waldmann, private communicatioff.— projection method [55].

In the case ofs = 1/2 one knows thek-quantum numbers for alN via the Bethe ansatz
[54,[73], and for spirs = 1 and evenV the £ quantum numbers are consistent with Refl [53].
It appears that for the properties of the first excited statd sules do not hold in general, but
only for “high enough”N > 5 [[75]. Then, as can be anticipated from taliles 1[dnd 2, we can

conjecture that

e if IV is even, then the first excited state ttas- 1 and is threefold degenerate, and

e if NV is odd and the single particle spin is half-integer, thenfits excited state has
S = 3/2 and is eightfold degenerate, whereas

e if NV is odd and the single particle spin is integer, then the fixsited state has = 1
and is sixfold degenerate.

Considering relative ground states in subspd¢és/) one also finds — for even as well as for

odd N — that the shift quantum numbekshow a strikingly simple regularity fav # 3

k= :I:(Ns—M)[%}

mod N ,

(47)
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where [N/2] denotes the smallest integer greater than or equ& A [7/6]. For N = 3
and3s — 2 > |M| > 1 one finds besides the ordinakyquantum numbers given bi/{47)
extraordinaryk-quantum numbers, which supplement the ordinary ones ta@dhgplete set
{k} =10,1,2}.

For evenN thek values form an alternating sequertceV/2,0, N/2, ... on descending from
the magnon vacuum with/ = Ns as known from the sign-rule of Marshall and Peiells [70].
For oddN it happens that the ordinakynumbers are repeated on descending fidm Ns—1
to M — 1iff N divides[2(Ns — M) + 1].

Using thek-rule one can as well derive a rule for the relative grountestaergies and for the
respectiveS quantum numbers:

e Forthe relative ground state energies one finds that ifthember is different in adjacent
subspaceFinin(S) < Emin(S + 1) holds. If thek-number is the same, the energies could
as well be the same.

e Therefore, ifN (even or odd) does not dividé(Ns — M) + 1)[ N/2], then any relative
ground state irt{(M) has the total spin quantum numlger= M.

e This is always true for the absolute ground state which tbeséhasS = 0 for Ns integer
andS = 1/2 for Ns half integer.

The k-rule {41) is founded in a mathematically rigorous way freven [70] 71 72]N = 3,
M = Ns, M = Ns — 1,andM = Ns — 2 [[/6]. An asymptotic proof for large enougk can
be provided for systems with an asymptotically finite exatagap, i. e. systems with integer
spins for which the Haldane conjecture appliesl[i77, 78]. In allestbases numerical evidence
was collected and the-rule as a conjecture still remains a challerige [76].

Rotational bands

For many spin systems with constant isotropic antiferrametig nearest neighbor Heisenberg
exchange the minimal energiés,;,,(S) form a rotational band, i. e. depend approximately
guadratically on the total spin quantum numig79, 80, 81]

Epin(S) ~ E, — J w S(S+1). (48)

The occurrence of a rotational band has been noted on seoeasions for an even number of
spins defining a ring structure, e. g. see Refl [81]. The mahenergies have been described as
“following the Landé interval rule”[28, 29, 30, 82]. Howex we find that the same property
also occurs for rings with an odd number of spins as well aghfervarious polytope config-
urations we have investigated, in particular for quantumsspositioned on the vertices of a
tetrahedron, cube, octahedron, icosahedron, trianguilsmpand an axially truncated icosa-
hedron. Rotational modes have also been found in the cootditite square and triangular
lattices of spint /2 Heisenberg antiferromagnels [82] 83].

There are several systems, like spin dimers, trimers, squétrahedra, and octahedra which
possess a strict rotational band since their Hamiltonianbeasimplified by quadrature. As an

5Work done together with Marshall Luban, Ames Lab, lowa, USA.
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example the Heisenberg square, i. e., a ring With= 4 is presented. Because the Hamilton
operator[[ZB) can be rewritten as

= —J (gz - S%?, - S§4> ) (49)
Siz = 5(1)+5(3), Su=3502)+3504), (50)

with all spin operator§2 ng andS%4 commuting with each other and wiffi, one can directly
obtain the complete set of eigenenergies, and these aracthiazed by the quantum numbers
S, S13 andS,,. In particular, the lowest energy for a given total spin guannumbelrS occurs
for the ChOiCGSlg = Sy = 2s

Emin(S) = —J [S(S+1)—2-25 (25 + 1)] = By — J S (S + 1), (51)

whereE, = 4s(2s + 1).J is the exact ground state energy. The various enetgigs(S) form

a rigorous parabolic rotational band of excitation enexgieherefore, these energies coincide
with a parabolic fit (crosses connected by the dashed lineher.h.s. of Fig[Ill) passing
through the antiferromagnetic ground state energy andigtekt energy level, i. e., the ground
state energy of the corresponding ferromagnetically axipl/stem.

30 F—

40 FN=4, s=5/2, AF

E/NI
E/N

>
2

Fig. 11: Energy spectra of antiferromagnetically coupled Heiseglspin rings (horizontal

dashes). The crosses connected by the dashed line repthesdititto the rotational band ac-
cording to(&1), which matches both the lowest and the highest energiesigx@a the I.h.s the

dashed line reproduces the exact rotational band, whereaber.h.s. it only approximates it,
but to high accuracy. The solid line on the r.h.s. correspotudthe approximation Eq_(b2).

It turns out that an accurate formula for the coefficiéxtV, s) of (&) can be developed using
the sublattice structure of the spin arrayl[79]. As an exampt repeat the basic ideas for
Heisenberg rings with an even number of spin sites [32]. Sunds are bipartite and can be
decomposed into two sublattices, labelédind B, with every second spin belonging to the
same sublattice. The classical ground state (Néel statgiven by an alternating sequence
of opposite spin directions. On each sublattice the spiasrartually parallel. Therefore, a
guantum trial state, where the individual spins on eachedtibé are coupled to their maximum
values,S4 = S = Ns/2, could be expected to provide a reasonable approximatitirettrue
ground state, especially sfassumes large values. For rings with e\%érnhe approximation to
the respective minimal energies for each value of the tmmaIS SA + SB is then given by
[B2]

Bs) = -5 [ss -2 ()] (52)



Quantum Theory of Molecular Magnetism X5.21

This approximation exactly reproduces the energy of thbédsgenergy eigenvalue, i. e., the
ground state energy of the corresponding ferromagneticallpled systemy = Ns). For all
smallerS the approximate minimal energy-r>{(S) is bounded from below by the true one
(Rayleigh-Ritz variational principle). The solid curvesgiays this behavior for the example of
N =6,s =23/2inFig.[11 (r.h.s.). The coefficient “4” in EJ_(b2) is the cd&=al value, i. e. for
each fixed eveV the coefficientD(N, s) approaches 4 with increasird79].

The approximate spectrunf,{52), is similar to that of twasp$ 4 and S, each of spin quan-
tum numberNs/2, that are coupled by an effective interaction of strengthiN. Therefore,
one can equally well say, that the approximate rotationatilnsidered iH{%2) is associated
with an effective Hamilton operator

4.J

N
where the two sublattice spinS,;, Sz, assume their maximal valug, = Sp = Ns/2. Hamil-
tonian [53) is also known as Hamiltonian of the Lieb-Mattisdal which describes a system

where each spin of one sublattice interacts with every spthe other sublattice with equal
strengthl[72, 84].

}Nlapprox _ 5’2 N S’i _ S’ZB 7 (53)

Wil
g
8

m
sy &
s 2

Fig. 12: The low-lying levels of a spinrindy = 6 ands = 5/2 in this example, can be grouped
into the lowestl(ancé) band, the first excitedekcitation) band and the quasi-continuum (QC).
For the spin levels of the L- and E-bahds given in brackets followed by the energy. Arrows in-
dicate strong transitions from the L-band. Associated nemslgive the total oscillator strength
fo for these transitions. With friendly permission by Olivealtvnann [81].

It is worth noting that this Hamiltonian reproduces morattize lowest levels in each subspace
H(S). At least for bipartite systems also a second band is acdyregproduced as well as
the gap to the quasi-continuum above, compare Figure 12 afd|&l]. This property is
very useful since the approximate Hamiltonian allows theagotation of several observables
without diagonalizing the full Hamiltonian.

It is of course of utmost importance whether the band strediven by the approximate Hamil-
tonian [53B) persists in the case of frustrated moleculesedins that at least the minimal ener-
gies still form a rotational band which is understandableast for larger spin quantum num-
berss taking into account that the parabolic dependence of thénmainenergies orb’ mainly
reflects the classical limit for a wide class of spin syste@%3.

The following example demonstrates that even in the casbeohighly frustrated molecule
{Mo,Fey} the minimal energies arrange as a “rotational bandti the case of Mo,,Fey }

"Work done with Matthias Exler, Universitat Osnabriicky@any.
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the spin system is decomposable into three sub-latticdssuib-lattice spin quantum numbers
Sa, Sg, andS¢ [I79,/80]. The corresponding approximate Hamilton operedads

Huomo =~ [ ($24 5+ 82)] (54)

Whereg is the total spin operator and the others are sub-lattice gjpérators.D and~ are
allowed to deviate from their respective classical valdess 6 and~y = 1, in order to correct
for finite s.

800

6001 + DMRG calculation
— fit to rotational ban

Fig. 13: DMRG eigenvalues and lowest rotational band of the- 5/2 icosidodecahedron;
m = 60 was used except for the lowest and first exited level whick eelculated withn =
120.

We use the DMRG method to approximate the lowest energy eidiges of the full Hamiltonian
and compare them to those predicted by the rotational bapdthgsis[(54). Fid. 13 shows the
results and a fit to the lowest rotational band. Assuming #raesdependence on as in
the s = 1/2 case, the relative error of the DMRG data should also be less t%. The
agreement between the DMRG energy levels and the prediciadratic dependence is very
good. Nevertheless, it remains an open question whethkehiging bands are present in such
a highly frustrated compound.

M agnetization jumps

Fig. 14: Structure of the icosidodecahedron (I.h.s.) and the cuddwedron (r.h.s.).

Although the spectra of many magnetic molecules possesatsorl band of minimal energies
E...n(S) and although in the classical limit, where the single-spiargum numbeg goes to
infinity, the functionE,,;,,(S) is even an exact parabola if the system has co-planar ground
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states[[85], wefind that for certain coupling topologies, including the oatahedron and the
icosidodecahedron (see Figl 14), that this rule is violéedigh total spins[[6/7, 86]. More
precisely, for the icosidodecahedron the last four poihte@graph ofE,,,;,, versuss, i. e. the
points withS = S,,,.. t0.S = S,,... — 3, lie on a straight line

Enin(S) = 60Js* —6Js(30s — S) . (55)

An analogous statement holds for the last three points afdhresponding graph for the cuboc-
tahedron. These findings are based on numerical calcuatidhe minimal energies for several
s both for the icosidodecahedron as well as for the cuboctahedror both and other systems
a rigorous proof of the high spin anomaly can be given[[67, 87]

The idea of the proof can be summarized as follows: A necgssardition for the anomaly is
certainly that the minimal energy in the one-magnon spadegenerate. Therefore, localized
one-magnon states can be constructed which are also of alieimargy. When placing a second
localized magnon on the spin array there will be a chanceitldes not interact with the
first one if a large enough separation can be achieved. Thistwe-magnon state is likely
the state of minimal energy in the two-magnon Hilbert spageabse for antiferromagnetic
interaction two-magnon bound states do not exist. Thisquore can be continued until no
further independent magnon can be placed on the spin arraysénse the system behaves as if
it consists of non-interacting bosons which, up to a lingtmumber, can condense into a single-
particle ground state. In more mathematical terms: In otdgrove the high-spin anomaly
one first shows an inequality which says that all poiffis&,.;.(S)) lie above or on the line
connecting the last two points. For specific systems as timesg¢ioned above what remains to
be done is to construct particular states which exactlyrasgtie values of’,,,;,, corresponding
to the points lying on the bounding line, then these statesaatomatically states of minimal
energy.

20" E
icosidodecahedron, s=1/2 5}

0 2 4 6 8 10 12 U 00 05 10 15 20 25 30 35
S gHgB/1

Fig. 15: Icosidodecahedron: L.h.s. — minimal energy levéls,,(S) as a function of total spin
S. R.h.s. — magnetization curveBt= 0 [67].

The observed anomaly — linear instead of parabolic depe@ederresults in a corresponding
jump of the magnetization curv®t versusB, see FiglIb. In contrast, for systems which obey
the Landé interval rule the magnetization curve at very temperatures is a staircase with
equal steps up to the highest magnetization. The anomalgt suleed be observed in magneti-
zation measurements of the Keplerate molec{iMds.,Fe;, }. Unfortunately, the magnetization
measurements [36,180] performed so far suffer from too hegiperatures which smear out the
anomaly.

8Work done with Heinz-Jiirgen Schmidt, Universitat Ostiaky Andreas Honecker, Universitat Braunschweig,
Johannes Richter and Jorg Schulenburg, Universitat elagd, Germany.
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Nevertheless, it may be possible to observe truly giant m@zation jumps in certain two-
dimensional spin systems which possess a suitable coufding. Kagomé)[[86]. In such
systems the magnetization jump can be of the same order asithiger of spins, i. e. the jump
remains finite — or in other words is macroscopic — in the tloelymamic limit’N — oco. Thus,
this effect is a true macroscopic quantum effect.

4 Dynamics

In this section | would like to outline two branches — tunngliand relaxation — where the
dynamics of magnetic molecules is investigated. The seasi&ept rather introductory since
the field is rapidly evolving and it is too early to draw a finattpre on all the details of the
involved processes.

4.1 Tunneling

Tunneling dynamics has been one of the corner stones in matemagnetism since its very
early days, see e. ¢. 188,121, 24] B9, 90].

The subject can roughly be divided into two parts, one dedls tunneling processes of the
magnetization in molecules possessing a high ground gtateasd an anisotropy barrier, the
second deals with the remaining tunneling processes, @.molecules which have as = 0
ground state.

E*
E*

Fig. 16: Sketch of the tunneling barrier for a high spin molecule wfth= 10, I.h.s. without
magnetic field, r.h.s. with magnetic field, compare E§. (5he arrows indicate a possible
resonant tunneling process.

As already mentioned in secti@nBB.1 some molecules likg;Mnd Fg possess a high ground
state spin. Since the higher lying levels are well separfated the low-lying.S = 10 levels

a single-spin Hamiltoniar15), which includes an anisogrégrm, is appropriate. Figufell6
sketches the energy landscape for an anisotropy term whighiddratic inS.. If the Hamilto-
nian includes terms like a magnetic fieldzardirection that do not commute witfi, resonant
tunneling is observed between states M ) and | S, —M ). This behavior is depicted on the
l.h.s. of Fig[I® for the transition betweéd = —10 and M = 10. If an additional magnetic
field is applied inz-direction the quadratic barrier acquires an additiorreédr Zeeman term
and is changed like depicted on the r.h.s. of Eij. 16. Noweling is possible between states
of different| M|, see e. g[191].

It is rather simple to model the tunneling process in the rhbtilbert space ofS = 10. i. e.

a space with dimensiolS + 1 = 21. Nevertheless, in a real substance the tunneling process
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is accompanied and modified by other influences. The first miagor is temperature which

may enhance the process, this leads to thermally assistadling [92]. Each such substance
hosts phonons which modify the tunneling process, too Jtiegun phonon assisted tunneling
[93,194,[95]96]. Then local dipolar fields and nuclear hyperfields may strongly affect the

relaxation in the tunneling regimgl[6]. In addition thereyntee topological quenching due to
the symmetry of the materiel [97,198,199]. And last but nostedescribing such complicated
molecules not in effective single-spin models but in mapirsnodels is still in an unsatisfac-

tory state, comparé [100].

Fig. 17: Sketch of the tunneling process betweéelNike states on a spin ring. Without loss of
generality the state on the l.h.s. will be denoted|ieel 1) and the state on the r.h.s. will be
denoted by Néel 2 ).

Another kind of tunneling is considered for Heisenberg spmgs with uniaxial single-ion
anisotropy. Classically the ground state of even rings NieeFe and Cs:Fgis given by a
sequence of spin up and down like in Higl 17. It now turns oatt $ich a Néel-like state, which
is formulated in terms of spin-coherent stafeg (40), cbutes dominantly to the true ground
state as well as to the first excited state if the anisotropgrge enough][€9]. Thus it is found
that the ground stateF), ) and the first excited stateF; ) can be approximated as

By ~ %(|NéeL1>i\NéeL2>) (56)
B ~ %(|NéeL1>¢\Né8L2>),

where the upper sign is appropriate for rings where the numbgpins/N is a multiple of 4,

e. g.N = 8, and the lower sign is for all other evew.

Therefore, the tunneling frequency is approximately gibgnhe gap between ground and first
excited state. Experimentally, such a tunnel process i taembserve, especially since ESR is
sensitive only to the total spin. What would be needed is al jpbe like NMR. This could be
accomplished by replacing one of the iron ions by anothe¢osa

The tunneling process was further analyzed for variousagaddithe uniaxial single-ion anisotropy
[L07]. Since in such a case the cyclic shift symmetry pessigs still a good quantum number.
Therefore, mixing of states is only allowed between statiéls the same: quantum number.
This leads to the conclusion that the low-temperature timmp@henomena can be understood
as the tunneling of the spin vector between different rotesti modes withAS = 2, compare
Fig.[I8 and the subsection on rotational bands on page 19.

4.2 Relaxation dynamics

In a time-dependent magnetic field the magnetization tadsltow the field. Looking at this
process from a microscopic point of view, one realizes théige Hamiltonian would commute
with the Zeeman term, no transitions would occur, and thenetization would not change a
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Fig. 18: Energy spectrum of spin rings withi = 6 and vanishing anisotropy at two magnetic
fields drawn as a function of the magnetic quantum numbemhe dashed curves represent the
lowest-lying parabola’,,;, (M) discussed in sectidn3.4. A white or black circle indicaked t

a state belongs té = 0 or £ = N/2, compare Fig[ZIR. States belonging to one spin multiplet
are located on straight lines like that plotted in panel (a) the S = 4 multiplet. With friendly
permissions by Oliver Waldmann2101].

tiny bit. There are basically two sources which permit tiamss: non-commuting parts in the

spin Hamiltonian and interactions with the surroundingthie latter case the interaction with
phonons seems to be most important.

Since a complete diagonalization of the full Hamiltonianliding non-commuting terms as
well as interactions like the spin-phonon interaction &qgpically impossible, both phenomena
are modeled with the help of rate equations.

Ae

Fig. 19: Schematic energy spectrum in the vicinity of an avoided tgessing. The formula by
Landau, Zener, and Btkelberg [Bl7) approximates the probabilitfor the tunneling process
from M, to M,.

If we start with a Hamiltonianf/,, which may be the Heisenberg Hamiltonian and add a non-
commuting termi’ like anisotropy the eigenstates of the full Hamiltoniansuperpositions of
those ofH,. This expresses itself in avoided level crossings wherepieetrum off, would
show level crossings, compare Higl 19. Transitions betwégenstates off,, which may have
goodM quantum numbers, can then effectively be modeled with timadta by Landau, Zener,
and Stickelberd [102, 103, 104, 105, 106]

AZ
p = l—exp{— T y : (57)
2hguB|M1 - M2| B

dt

A denotes the energy gap at the avoided level crossing.
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The effect of phonons is taken into account by means of twajpies: detailed balance, which
models the desire of the system to reach thermal equilibeinchenergy conservation, which
takes into account that the energy released or absorbecebgpth system must be absorbed
or released by the phonon system and finally exchanged wetithérmostat. The interesting
effects arise since the number of phonons is very limite@peratures in the Kelvin-range
or below, thus they may easily be used up after a short timen bottleneck) and have to
be provided by the thermostat around which needs a chasteelaxation time. Since this
all happens in a time-dependent magnetic field, the Zeemtings change all the time and
phonons of different frequency are involved at each timp.ste addition the temperature of
the spin system changes during the process because thibbeigih with the thermostat (lig.
Helium) is not instantaneous. More accurately the processtiin equilibrium at all, especially
for multi-level spin systems. Only for two-level systems time-dependent occupation can be
translated into an apparent temperature. In essence trdedtdynamics leads to distinct hys-
teresis loops which have the shape of a butterfly|[107, 108}, For more detailed information
on dissipative two-level systems the interested readefésned to Ref.[[110, 109].

5 Magnetocalorics

The mean (internal) energy, the magnetization and the ntiagiredd are thermodynamic ob-

servables just as pressure and volume. Therefore, we cagndégrmodynamic processes
which work with magnetic materials as a medium. This has of$® already been done for
a long time. The most prominent application is magnetiratiooling which is mainly used

to reach sub-Kelvin temperatures [111]. The first obseovatif sub-Kelvin temperatures is a
nice example of how short an article can be to win the NobekpiGiauque, Chemistry, 1949).
Meanwhile magnetization cooling is used in ordinary refregors.

T68 LETTERS TO THE EDITOR

Attainment of Temperatures Below 1° Absolute by Demagnetization of Gdy(SO,);-8H,0

We have recently carried out some preliminary experi-
ments on the adiabatic demagnetization of Gda(S5O04)s
+8H:0 at the temperatures of liguid helium. As previously
predicted by one of us, a large fractional lowering of the
absolute temperature was obtained.

An iron-free solenoid producing a field of about 8000
gauss was used for all the measurements, The amount of
Gdo(504):-8H:0 was 61 g. The observations were checked
by many repetitions of the cooling. The temperatures were
measured by means of the inductance of a coil surrounding
the gadolinium sulfate. The coil was immersed in liquid
helium and isolated from the gadolinium by means of an
evacuated space. The thermometer was in excellent
agreement with the temperature of liquid helium as
indicated by its vapor pressure down to 1.5°K.

On March 19, starting at a temperature of about 3.4°K,
the material cooled to 0.53°K. On April 8, starting at
about 2° a temperature of 0.34°K was reached. On
April 9, starting at about 1.5% a temperature of 0.25°K
was attained.

It is apparent that it will be possible to obtain much
lower temperatures, especially when successive demagneti-
zations are utilized.

W. F. Giauque
D. P. MacDougaLL
Department of Chemistry,
University of California,
Berkeley, California,
April 12, 1933.

Fig. 20: The first observation of sub-Kelvin temperatuies |111] is@erexample of how short
an article can be to win the Nobel prize (Giauque, Chemidie¢9).

In early magnetocaloric experiments simple refrigerakesparamagnetic salts have been used.
We will therefore consider such examples first.
For a paramagnet the Hamiltonian consists of the Zeemandaty We then obtain for the
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partition function

_ [ sinBgupB(s + 1/ "
Z(I,B,N) = { sinhBgupB/2] } ' =

Then the magnetization is
M(T,B,N) = Ngug{(s+1/2)cothBgupB(s+1/2)] — 1/2siniBgupB/2]} . (59)
and the entropy reads

sinhBgupB(s +1/2)]
sinhBgppB/2]

Besides their statistical definition both quantities fallfsom the general thermodynamic rela-
tionship

S(T,B,N) = NkBIn{ }—k;BﬁBM(T,B,N). (60)

OF oF
dF = (a—T)BdT+ <a—B)TdB——SdT—MdB, (61)

whereF (T, B, N) = —kgT In[Z(T, B, N)].

Looking at Eq.[(5B) it is obvious that all thermodynamic atvables for a paramagnet depend
on temperature and field via the combinatiBrii7’, and so does the entropy. Therefore, an
adiabatic demagnetizatio (= const) means that the rati® /7" has to remain constant, and

thus temperature shrinks linearly with field, i.e.

8T para T
(32), = & )

This situation changes completely for an interacting spatesn. Depending on the interactions
the adiabatic cooling ratg% can be smaller or bigger than the paramagneticofe (62) ard ev
change sign, i.e. one would observe heating during demiagtien. It is nowadays understood
that the cooling rate acquires extreme values close to phasstions due to the excess entropy
associated with such processes [112]) 113][114, 115].

E
S=1, M=+1

S=1, M=0

S=1, M=-1
S=0, M=0
T s

Fig. 21: L.h.s.: Sketch of an antiferromagnetically coupled spmeali R.h.s.: Dependence of
the energy levels on magnetic field for an antiferromagaéificoupled spint/2 dimer. At the
critical field B, the lowest triplet level crosses the ground state level With 0.

In the following this statement will be made clear by distngshe example of a simple anti-
ferromagnetically coupled spih/2 dimer (Fig.[21, l.h.s.). In a magnetic field such a system
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S as funcrtion of Tand B C as function of T and B

Fig. 22: L.h.s.: Entropy of the dimer (Fig._21) as functionBfand7'. R.h.s.: Heat capacity of
the dimer as function aB and 7.

experiences a “quantum phase transition” if the lowesltdtilgvel crosses the original ground
state withS = 0, see Figi’21, r.h.s.. Although one would hesitate to calhsurcordinary ground
state level crossing quantum phase transition it nevartises one. AT' = 0 the magnetization
M(T = 0, B) is a non-analytic function of the magnetic field At the critical field B. where

the levels cross the magnetization exhibits a step.

In addition the entropy, which & = 0 is zero for the non-degenerate ground state acquires a
finite value at the critical field,. due to the degeneracy of the crossing levels. This enhamteme
remains present even at temperatufes- 0, compare Fig[C22, I.h.s.. In addition the heat
capacity varies strongly around the critical field as is shawFig.[22, r.h.s..

T-B isentropes

2T__,a/ b./‘/

V==
—

0: ?\\\\)

Fig. 23: Isentrops of the spin dimer. The straight lines show the bienaf a paramagnet for
comparison.B is along ther-axis, T along they-axis.

The behavior of the entropy as well as of the heat capacitiaggphow the adiabatic cooling
rate

oy _ . (53)
(58), =" ©9

depends on field and temperature. Fidude 23 shows the ipesstad the antiferromagnetically
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coupled dimer both as function of fielB and temperaturd’. The straight lines show the
behavior of a paramagnet for comparison. Three regionsightighted.

e a: For low fields and high temperaturgg is smaller than for the paramagnet.

e b: For high fields and high temperatures the interactingesystssumes the paramagnetic
limit, i.e. 2% is the same in both systems.

e c: For low temperatures and fields just above the criticailf%% is much bigger than the
cooling rate of the paramagnet.

¢ Not highlighted but nevertheless very exciting is the ragiblow temperature just below
the critical field where the “cooling” rat% has the opposite sign, i.e. upon demagnetiz-
ing the system heats up and upon magnetizing the systemaoots

'I_'he rateg—g ®3) dgpends directly on the deriyative of the _entro_py witbpect to the magnetic
field. Therefore, it is clear that the effect will be enhanded high degeneracy can be ob-
tained at some critical field. This is indeed possible in sgvieustrated materials where giant
magnetization jumps to saturation are obserized[86, 114 /11115].

cuboctahedron, s=1/2 ring, N=12, s=1/2
10 [T T T T T T T .- T ™ 10 LA AL AL S B B B B
08| 4 08} .
Q06 4 Q 06} |
— — L
m m
=~ 04 . =~ 04} .
0.2F : . 02} .
L e i / °-°'.‘T.‘T‘T.“.‘.—.;.‘T’.”.#.’Tf.ﬂ.'
00 05 10 15 20 0.0 0.2 04060810 12 1.4 16
B/Bsat B/Bsat

Fig. 24: Isentropes of an antiferromagnetically coupled spjf2- cuboctahedron (l.h.s.) in
comparison to the isentropes of an antiferromagneticatlypied spin ring of 12 spins with
s = 1/2 (rh.s.). The structure of the cuboctahedron is shown in[Ep(r.h.s.).

The following Figure[24 compares isentropes of an antifeagnetically coupled spihy2
cuboctahedron (I.h.s.) with the isentropes of an antifeagnetically coupled spin ring of 12
spins withs = 1/2 (r.h.s.). It is clearly visible that the cuboctahedral spystem has steeper
isentropes than the ring system, and the reason is that Hee@hedron features a larger jump
to magnetization saturatiotl\(\/ = 2) than the spin ring&AM = 1) which is connected with
an enhanced degeneracy and thus higher entropy.

Summarizing, one can say that low-dimensional frustrgb@ts/stems and especially magnetic
molecules are substances with an interesting magnetacalkenavior and may turn out to be
useful new refrigerants for special applications.
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