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1 Introduction

The synthesis of molecular magnets has undergone rapid progress in recent years [1, 2, 3, 4, 5,
6]. Each of the identical molecular units can contain as few as two and up to several dozens
of paramagnetic ions (“spins”). One of the largest paramagnetic molecules synthesized to date,
the polyoxometalate{Mo72Fe30} [7] contains 30 iron ions of spins = 5/2. Although these
materials appear as macroscopic samples, i. e. crystals or powders, the intermolecular mag-
netic interactions are utterly negligible as compared to the intramolecular interactions. There-
fore, measurements of their magnetic properties reflect mainly ensemble properties of single
molecules.
Their magnetic features promise a variety of applications in physics, magneto-chemistry, bi-
ology, biomedicine and material sciences [1, 3, 4] as well asin quantum computing [8, 9, 10].
The most promising progress so far is being made in the field ofspin crossover substances using
effects like “Light Induced Excited Spin State Trapping (LIESST)” [11].
It appears that in the majority of these molecules the localized single-particle magnetic moments
couple antiferromagnetically and the spectrum is rather well described by the Heisenberg model
with isotropic nearest neighbor interaction sometimes augmented by anisotropy terms [12, 13,
14, 15, 16]. Thus, the interest in the Heisenberg model, which is known already for a long time
[17], but used mostly for infinite one-, two-, and three-dimensional systems, was renewed by the
successful synthesis of magnetic molecules. Studying suchspin arrays focuses on qualitatively
new physics caused by the finite size of the system.
Several problems can be solved with classical spin dynamics, which turns out to provide accu-
rate quantitative results for static properties, such as magnetic susceptibility, down to thermal
energies of the order of the exchange coupling. However, classical spin dynamics will not be
the subject of this chapter, it is covered in many publications on Monte-Carlo and thermostated
spin dynamics. One overview article which discusses classical spin models in the context of
spin glasses is given by Ref. [18].
Theoretical inorganic chemistry itself provides several methods to understand and describe
molecular magnetism, see for instance Ref. [19]. In this chapter we would like to focus on
those subjects which are of general interest in the context of this book.

2 Substances

From the viewpoint of theoretical magnetism it is not so important which chemical structures
magnetic molecules actually have. Nevertheless, it is veryinteresting to note that they appear
in almost all branches of chemistry. There are inorganic magnetic molecules like polyoxometa-
lates, metal-organic molecules, and purely organic magnetic molecules in which radicals carry
the magnetic moments. It is also fascinating that such molecules can be synthesized in a huge
variety of structures extending from rather unsymmetric structures to highly symmetric rings.
One of the first magnetic molecules to be synthesized was Mn-12-acetate [20] (Mn12) –
[Mn12O12(CH3COO)16(H2O)4] – which by now serves as the “drosophila” of molecular mag-
netism, see e. g. [1, 21, 4, 22, 23]. As shown in Fig. 1 the molecules contains four Mn(IV) ions
(s = 3/2) and eight Mn(III) ions (s = 2) which are magnetically coupled to give anS = 10
ground state. The molecules possesses a magnetic anisotropy, which determines the observed
relaxation of the magnetization and quantum tunneling at low temperatures [21, 24].
Although the investigation of magnetic molecules in general – and of Mn-12-acetate in partic-
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Fig. 1: Structure of Mn-12-acetate: On the l.h.s. the Mn ions are depicted by large spheres, on
the r.h.s. the dominant couplings are given. With friendly permission by G. Chaboussant.

ular – has made great advances over the past two decades, it isstill a challenge to deduce the
underlying microscopic Hamiltonian, even if the Hamiltonian is of Heisenberg type. Mn-12-
acetate is known for about 20 years now and investigated likeno other magnetic molecule, but
only recently its model parameters could be estimated with satisfying accuracy [25, 26].

Fig. 2: Structure of a chromium-4 and a chromium-8 ring. The Cr ions are depicted by large
spheres.

Another very well investigated class of molecules is given by spin rings among which iron rings
(“ferric wheels”) are most popular [27, 28, 29, 30, 31, 32, 33, 34]. Iron-6 rings for instance
can host alkali ions such as lithium or sodium which allows tomodify the parameters of the
spin Hamiltonian within some range [16, 35]. Another realization of rings is possible using
chromium ions as paramagnetic centers. Figure 2 shows the structure of two rings, one with
four chromium ions the other one with eight chromium ions.
A new route to molecular magnetism is based on so-called Keplerate structures which allow the
synthesis of truly giant and highly symmetric spin arrays. The molecule{Mo72Fe30} [7, 36]
containing 30 iron ions of spins = 5/2 may be regarded as the archetype of such structures.
Figure 3 shows on the l.h.s. the inner skeleton of this molecule – Fe and O-Mo-O bridges – as
well as the classical ground state [37] depicted by arrows onthe r.h.s. [36].
One of the obvious advantages of magnetic molecules is that the magnetic centers of different
molecules are well separated by the ligands of the molecules. Therefore, the intermolecular
interactions are utterly negligible and magnetic molecules can be considered as being indepen-
dent. Nevertheless, it is desirable to build up nanostructured materials consisting of magnetic
molecules in a controlled way. Figure 4 gives an example of a planar structure consisting of lay-
ers of{Mo72Fe30} [38, 39] which has been synthesized recently together with alinear structure
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Fig. 3: Structure of{Mo72Fe30}, a giant Keplerate molecule where 30 iron ions are placed at
the vertices of an icosidodecahedron. L.h.s.: sketch of thechemical structure, r.h.s. magnetic
structure showing the iron ions (spheres), the nearest neighbor interactions (edges) as well as
the spin directions in the classical ground state. The dashed triangle on the l.h.s. corresponds
to the respective triangle on the r.h.s.. With friendly permission by Paul K̈ogerler [36].

Fig. 4: Square lattice of{Mo72Fe30}-molecules: Each molecule is connected with its four
nearest neighbors by an antiferromagnetic coupling. With friendly permission by Paul K̈ogerler
[38, 39].

consisting of chains of{Mo72Fe30} [40]. These systems show new combinations of physical
properties that stem from both molecular and bulk effects.
Many more structures than those sketched above can be synthesized nowadays and with the
increasing success of coordination chemistry more are yet to come. The final hope of course is
that magnetic structures can be designed according to the desired magnetic properties. But this
goal is not close at all, it requires further understanding of the interplay of magneto-chemistry
and magnetic phenomena. One of the tools used to clarify suchquestions is density functional
theory or otherab initio methods [41, 42, 43, 44, 45, 46].

3 Theoretical techniques and results

3.1 Hamiltonian

It appears that in the majority of these molecules the interaction between the localized single-
particle magnetic moments can be rather well described by the Heisenberg model with isotropic
(nearest neighbor) interaction and an additional anisotropy term [12, 13, 14, 15, 16]. Dipolar
interactions are usually of minor importance. It is also found that antiferromagnetic interactions
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are favored in most molecules leading to nontrivial ground states.

Heisenberg Hamiltonian

For many magnetic molecules the total Hamilton operator canbe written as

H
∼

= H
∼ Heisenberg+H

∼ anisotropy+H
∼ Zeeman (1)

H
∼ Heisenberg = −

∑

u,v

Juv~s∼(u) · ~s
∼
(v) (2)

H
∼ anisotropy = −

N
∑

u=1

du(~e(u) · ~s∼(u))2 (3)

H
∼ Zeeman = gµB

~B · ~S
∼
. (4)

The Heisenberg Hamilton operator1 in the form given in Eq. (2) is isotropic,Juv is a symmet-
ric matrix containing the exchange parameters between spins at sitesu andv. The exchange
parameters are usually given in units of energy, andJuv < 0 corresponds to antiferromagnetic,
Juv > 0 to ferromagnetic coupling2. The sum in (2) runs over all possible tuples(u, v). The
vector operators~s

∼
(u) are the single-particle spin operators.

The anisotropy terms (3) usually simplify to a large extend,for instance for spin rings, where
the site-dependent directions~e(u) are all equal, e. g.~e(u) = ~ez and the strength as well is the
same for all sitesdu = d.
The third part (Zeeman term) in the full Hamiltonian describes the interaction with the exter-
nal magnetic field. Without singe-site andg-value anisotropy the direction of the field can be
assumed to be along thez-axis which simplifies the Hamiltonian very much.
Although the Hamiltonian looks rather simple, the eigenvalue problem is very often not solvable
due to the huge dimension of the Hilbert space or because the number of exchange constants is
too big to allow an accurate determination from experimental data. Therefore, one falls back
to effective single-spin Hamiltonians for molecules with non-zero ground state spin and a large
enough gap to higher-lying multiplets.

Single-spin Hamiltonian

For molecules like Mn12 and Fe8 which possess a high ground state spin and well separated
higher lying levels the following single-spin Hamiltonian

H
∼

= −D2S∼
2
z −D4S∼

4
z +H

∼
′ (5)

H
∼

′ = gµBBxS∼x (6)

is appropriate, see e. g. Ref. [23]. The first two terms of the Hamilton operatorH
∼

represent
the anisotropy whereasH

∼
′ is the Zeeman term for a magnetic field along thex-axis. The

total spin is fixed, i. e.S = 10 for Mn12 and Fe8, thus the dimension of the Hilbert space is
dim(H) = 2S + 1.
The effective Hamiltonian (5) is sufficient to describe the low-lying spectrum and phenomena
like magnetization tunneling. SinceH

∼
′ does not commute with thez-component of the total

1Operators are denoted by a tilde.
2One has to be careful with this definition since it varies fromauthor to author
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spinS
∼z, every eigenstate|M 〉 of S

∼z, i. e. the states with good magnetic quantum numberM ,
is not stationary but will tunnel through the barrier and after half the period be transformed into
| −M 〉.

3.2 Evaluating the spectrum

The ultimate goal is to evaluate the complete eigenvalue spectrum of the full Hamilton operator
(1) as well as all eigenvectors. Since the total dimension ofthe Hilbert space is usually very
large, e. g. dim(H) = (2s + 1)N for a system ofN spins of equal spin quantum numbers, a
straightforward diagonalization of the full Hamilton matrix is not feasible. Nevertheless, very
often the Hamilton matrix can be decomposed into a block structure because of spin symme-
tries or space symmetries. Accordingly the Hilbert space can be decomposed into mutually
orthogonal subspaces. Then for a practical evaluation onlythe size of the largest matrix to be
diagonalized is of importance (relevant dimension).

Product basis

The starting point for any diagonalization is the product basis | ~m 〉 = |m1, . . . , mu, . . . , mN 〉
of the single-particle eigenstates of alls

∼z(u)

s
∼z(u) |m1, . . . , mu, . . . , mN 〉 = mu |m1, . . . , mu, . . . , mN 〉 . (7)

These states are sometimes called Ising states. They span the full Hilbert space and are used to
construct symmetry-related basis states.

Symmetries of the problem

Since the isotropic Heisenberg Hamiltonian includes only ascalar product between spins, this
operator is rotationally invariant in spin space, i. e. it commutes with~S

∼
and thus also withS

∼z

[

H
∼ Heisenberg, ~S∼

2
]

= 0 ,
[

H
∼ Heisenberg, S∼z

]

= 0 . (8)

In a case where anisotropy is negligible a well-adapted basis is thus given by the simultaneous
eigenstates|S,M, α 〉 of ~S

∼
2 andS

∼z, whereα enumerates those states belonging to the sameS
andM [47, 48]. Since the applied magnetic field can be assumed to point into z-direction for
vanishing anisotropy the Zeeman term automatically also commutes withH

∼ Heisenberg, ~S∼
2, and

S
∼z. SinceM is a good quantum number the Zeeman term does not need to be included in the
diagonalization but can be added later.
Besides spin symmetries many molecules possess spatial symmetries. One example is given by
spin rings which have a translational symmetry. In general the symmetries depend on the point
group of the molecule; for the evaluation of the eigenvalue spectrum its irreducible representa-
tions have to be used [13, 16, 47]. Thus, in a case with anisotropy one looses spin rotational
symmetries but one can still use space symmetries. Without anisotropy one even gains a further
reduction of the relevant dimension.
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Dimension of the problem

The following section illuminates the relevant dimensionsassuming certain symmetries3.
If no symmetry is present the total dimension is just

dim(H) =

N
∏

u=1

(2s(u) + 1) (9)

for a spin array ofN spins with various spin quantum numbers. In many cases the spin quantum
numbers are equal resulting in a dimension of the total Hilbert space of dim(H) = (2s+ 1)N .
If the Hamiltonian commutes withS

∼z thenM is a good quantum number and the Hilbert space
H can be divided into mutually orthogonal subspacesH(M)

H =

+Smax
⊕

M=−Smax

H(M) , Smax =

N
∑

u=1

s(u) . (10)

For given values ofM , N and of alls(u) the dimension dim(H(M)) can be determined as
the number of product states (7), which constitute a basis inH(M), with

∑

umu = M . The
solution of this combinatorial problem can be given in closed form [48]

dim(H(M)) =
1

(Smax−M)!

[

(

d

dz

)Smax−M N
∏

x=1

1 − z2s(x)+1

1 − z

]

z=0

. (11)

For equal single-spin quantum numberss(1) = · · · = s(N) = s, and thus a maximum total
spin quantum number ofSmax = Ns, (11) simplifies to

dim(H(M)) = f(N, 2s+ 1, Smax−M) with (12)

f(N, µ, ν) =

⌊ν/µ⌋
∑

n=0

(−1)n

(

N

n

)(

N − 1 + ν − nµ

N − 1

)

.

In both formulae (11) and (12),M may be replaced by|M | since the dimension ofH(M)
equals those ofH(−M). ⌊ν/µ⌋ in the sum symbolizes the greatest integer less or equal toν/µ.
Eq. (12) is known as a result of de Moivre [49].
If the Hamiltonian commutes with~S

∼
2 and all individual spins are identical the dimensions of

the orthogonal eigenspacesH(S,M) can also be determined. The simultaneous eigenspaces
H(S,M) of ~S

∼
2 andS

∼z are spanned by eigenvectors ofH
∼

. The one-dimensional subspace
H(M = Smax) = H(Smax, Smax), especially, is spanned by|Ω 〉, a state called magnon vacuum.
The total ladder operators (spin rising and lowering operators) are

S
∼
± = S

∼x ± i S
∼y . (13)

For S > M , S
∼
− maps any normalizedH

∼
-eigenstate∈ H(S,M + 1) onto anH

∼
-eigenstate

∈ H(S,M) with norm
√

S(S + 1) −M(M + 1).
For0 ≤ M < Smax, H(M) can be decomposed into orthogonal subspaces

H(M) = H(M,M) ⊕ S
∼
−H(M + 1) (14)

3Work done with Klaus Bärwinkel and Heinz-Jürgen Schmidt,Universität Osnabrück, Germany.
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with

S
∼
−H(M + 1) =

⊕

S≥M+1

H(S,M) . (15)

In consequence, the diagonalization ofH
∼

in H has now been traced back to diagonalization in
the subspacesH(S, S), the dimension of which are forS < Smax

dim(H(S, S)) = dim(H(M = S)) − dim(H(M = S + 1)) (16)

and can be calculated according to (12).
As an example for space symmetries I would like to discuss thetranslational symmetry found
in spin rings. The discussed formalism can as well be appliedto other symmetry operations
which can be mapped onto a translation. Any such translationis represented by the cyclic shift
operatorT

∼
or a multiple repetition.T

∼
is defined by its action on the product basis (7)

T
∼
|m1, . . . , mN−1, mN 〉 = |mN , m1, . . . , mN−1 〉 . (17)

The eigenvalues ofT
∼

are theN-th roots of unity

zk = exp

{

−i2πk
N

}

, k = 0, . . . , N − 1 , pk = 2πk/N , (18)

wherek will be called translational (or shift) quantum number andpk momentum quantum
number or crystal momentum. The shift operatorT

∼
commutes not only with the Hamiltonian but

also with total spin. AnyH(S,M) can therefore be decomposed into simultaneous eigenspaces
H(S,M, k) of ~S

∼
2, S

∼z andT
∼

.
In the following we demonstrate how an eigenbasis of bothS

∼z andT
∼

can be constructed, this
basis spans the orthogonal Hilbert spacesH(M, k). How total spin can be included by means
of an irreducible tensor operator approach is described in Refs. [13, 16, 47].
A special decomposition ofH into orthogonal subspaces can be achieved by starting with the
product basis and considering the equivalence relation

|ψ 〉 ∼= |φ 〉 ⇔ |ψ 〉 = T
∼

n |φ 〉 , n ∈ {1, 2, . . . , N} (19)

for any pair of states belonging to the product basis. The equivalence relation then induces
a complete decomposition of the basis into disjoint subsets, i. e. the equivalence classes. A
“cycle” is defined as the linear span of such an equivalence class of basis vectors. The obviously
orthogonal decomposition ofH into cycles is compatible with the decomposition ofH into the
variousH(M). Evidently, the dimension of a cycle can never exceedN . Cycles are called
“proper cycles” if their dimension equalsN , they are termed “epicycles” else. One of theN
primary basis states of a proper cycle may arbitrarily be denoted as

|ψ1 〉 = |m1, . . . , mN 〉 (20)

and the remaining ones may be enumerated as

|ψn+1 〉 = T
∼

n |ψ1 〉 , n = 1, 2, . . . , N − 1 . (21)
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The cycle under consideration is likewise spanned by the states

|χk 〉 =
1√
N

N−1
∑

ν=0

(

ei 2π k

N T
∼

)ν

|ψ1 〉 (22)

which are eigenstates ofT
∼

with the respective shift quantum numberk. Consequently, every
k occurs once in a proper cycle. An epicycle of dimensionD is spanned byD eigenstates of
T
∼

with each of the translational quantum numbersk = 0, N/D, . . . , (D − 1)N/D occurring
exactly once.
As a rule of thumb one can say that the dimension of eachH(M, k) is approximately dim(H(M, k)) ≈
dim(H(M))/N . An exact evaluation of the relevant dimensions for spin rings can be obtained
from Ref. [48].

Exact diagonalization

If the relevant dimension is small enough the respective Hamilton matrices can be diagonalized,
either analytically [50, 51, 48] or numerically, see e. g. [52, 53, 54, 55, 13, 56, 57, 47].
Again, how such a project is carried out, will be explained with the help of an example, a simple
spin ring withN = 6 ands = 1/2. The total dimension is dim(H) = (2s + 1)N = 64. The
Hamilton operator (2) simplifies to

H
∼ Heisenberg = −2J

N
∑

u=1

~s
∼
(u) · ~s

∼
(u+ 1) , N + 1 ≡ 1 . (23)

We start with the magnon vacuum|Ω 〉 = |+ + + + ++ 〉 which spans the Hilbert space
H(M) with M = Ns = 3. “±” are shorthand notations form = ±1/2. The dimension of the
subspace dim(H(M = Ns)) is one and the energy eigenvalue isEΩ = −2JNs2 = −3J . |Ω 〉
is an eigenstate of the shift operator withk = 0. SinceS is also a good quantum number in this
example|Ω 〉 has to be an eigenstate of~S

∼
2, too, the quantum number isS = Ns.

The next subspaceH(M) with M = Ns − 1 = 2 is spanned by| − + + + ++ 〉 and the five
other vectors which are obtained by repetitive applicationof T

∼
. This subspace obviously has

the dimensionN , and the cycle spanned byT
∼

n | − + + + ++ 〉, n = 0, . . . , N − 1 is a proper
one. Therefore, eachk quantum number arises once. The respective eigenstates ofT

∼
can be

constructed according to Eq. (22) as

|M = 2, k 〉 =
1√
N

N−1
∑

ν=0

(

ei 2π k

N T
∼

)ν

| − + + + ++ 〉 . (24)

All subspacesH(M, k) have dimension one. SinceS
∼
− |Ω 〉 is a state belonging toH(M =

Ns− 1) with the samek-quantum number as|Ω 〉 it is clear that|M = 2, k = 0 〉 is a already
an eigenstate of~S

∼
2 with S = Ns. The other|M = 2, k 6= 0 〉 must haveS = Ns− 1.

The next subspaceH(M) with M = Ns − 2 = 1 is spanned by three basic vectors, i. e.
| − − + + ++ 〉, | − + − + ++ 〉, | − + + − ++ 〉 and the repetitive applications ofT

∼
onto

them. The first two result in proper cycles, the third vector| − + + − ++ 〉 results in an epicy-
cle of dimension three, thus for the epicycle we find onlyk quantum numbersk = 0, 2, 4. The
energy eigenvalues found in the subspaceH(M = Ns−1) (“above”) must reappear here which
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again allows to address anS quantum number to these eigenvalues. The dimension of the sub-
spaceH(M = 1) is 15, the dimensions of the subspacesH(M, k) are 3 (k = 0), 2 (k = 1), 3
(k = 2), 2 (k = 3), 3 (k = 4), and 2 (k = 5).
The last subspace which has to be considered belongs toM = 0 and is spanned by| − − − + ++ 〉, | − − + − ++
and repetitive applications ofT

∼
. Its dimension is 20. Here| − + − + −+ 〉 leads to an epicycle

of dimension two.
The Hamilton matrices in subspaces withM < 0 need not to be diagonalized due to theS

∼z-
symmetry, i. e. eigenstates with negativeM can be obtained by transforming all individual
mu → −mu. Summing up the dimensions of allH(M) then yields1+6+15+20+15+6+1 =
64

√
.

Fig. 5: Energy eigenvalues as a function of total spin quantum number S (l.h.s.) andk (r.h.s.).

Figure 5 shows the resulting energy spectrum both as a function of total spinS as well as a
function of translational quantum numberk.

Projection and Lanczos method

Complex hermitian matrices can be completely diagonalizednumerically up to a size of about
10,000 by 10,000 which corresponds to about 1.5 Gigabyte of necessary RAM. Nevertheless,
for larger systems one can still use numerical methods to evaluate low-lying energy levels and
the respective eigenstates with high accuracy.
A simple method is the projection method [55] which rests on the multiple application of the
Hamiltonian on some random trial state.
To be more specific let’s approximate the ground state of a spin system. We start with a random
trial state |φ0 〉 and apply an operator which “cools” the system. This operator is given by the
time evolution operator with imaginary time steps

| φ̃1 〉 = exp
{

−εH
∼

}

|φ0 〉 . (25)

Expanding |φ0 〉 into eigenstates| ν 〉 of the Hamilton operator elucidates how the method
works

| φ̃1 〉 =
∑

ν=0

exp {−εEν} | ν 〉〈 ν |φ0 〉 (26)

= exp {−εE0}
∑

ν=0

exp {−ε(Eν − E0)} | ν 〉〈 ν |φ0 〉 . (27)

Relative to the ground state component all other componentsare exponentially suppressed. For
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practical purposes equation (26) is linearized and recursively used

| φ̃i+1 〉 =
(

1 − εH
∼

)

|φi 〉 , |φi+1 〉 =
| φ̃i+1 〉

√

〈 φ̃i+1 | φ̃i+1 〉
. (28)

ε has to be small enough in order to allow the linearization of the exponential. It is no problem
to evaluate several higher-lying states by demanding that they have to be orthogonal to the
previous ones. Restricting the calculation to orthogonal eigenspaces yields low-lying states in
these eigenspaces which allows to evaluate even more energylevels. The resulting states obey
the properties of the Ritz variational principle, i. e. theylie above the ground state and below
the highest one.
Another method to partially diagonalize a huge matrix was proposed by Cornelius Lanczos in
1950 [58, 59]. Also this method uses a (random) initial vector. It then generates an orthonormal
system in such a way that the representation of the operator of interest is tridiagonal. Every
iteration produces a new tridiagonal matrix which is by one row and one column bigger than
the previous one. With growing size of the matrix its eigenvalues converge against the true ones
until, in the case of finite dimensional Hilbert spaces, the eigenvalues reach their true values.
The key point is that the extremal eigenvalues converge rather quickly compared to the other
ones [60]. Thus it might be that after 300 Lanczos steps the ground state energy is already
approximated to 10 figures although the dimension of the underlying Hilbert space is108.
A simple Lanczos algorithm looks like the following. One starts with an arbitrary vector|ψ0 〉,
which has to have an overlap with the (unknown) ground state.The next orthogonal vector is
constructed by application ofH

∼
and projecting out the original vector|ψ0 〉

|ψ′
1 〉 = (1 − |ψ0 〉〈ψ0 | )H∼ |ψ0 〉 = H

∼
|ψ0 〉 − 〈ψ0 |H∼ |ψ0 〉 |ψ0 〉 , (29)

which yields the normalized vector

|ψ1 〉 =
|ψ′

1 〉
√

〈ψ′
1 |ψ′

1 〉
. (30)

Similarly all further basis vectors are generated

|ψ′
k+1 〉 = (1 − |ψk 〉〈ψk | − |ψk−1 〉〈ψk−1 | )H∼ |ψk 〉 (31)

= H
∼
|ψk 〉 − 〈ψk |H |ψk 〉 |ψk 〉 − 〈ψk−1 |H∼ |ψk 〉 |ψk−1 〉

and

|ψk+1 〉 =
|ψ′

k+1 〉
√

〈ψ′
k+1 |ψ′

k+1 〉
. (32)

The new Lanczos vector is by construction orthogonal to the two previous ones. Without proof
we repeat that it is then also orthogonal to all other previous Lanczos vectors. This constitutes
the tridiagonal form of the resulting Hamilton matrix

Ti,j = 〈ψi |H∼ |ψj 〉 with Ti,j = 0 if |i− j| > 1 . (33)

The Lanczos matrixT can be diagonalized at any step. Usually one iterates the method until a
certain convergence criterion is fulfilled.



X5.12 Jürgen Schnack

The eigenvectors ofH
∼

can be approximated using the eigenvectors|φµ 〉 of T

|χµ 〉 ≈
n
∑

i=0

〈ψi |φµ 〉 |ψi 〉 , (34)

whereµ labels the desired energy eigenvalue, e. g. the ground stateenergy. n denotes the
number of iterations.
The simple Lanczos algorithm has some problems due to limited accuracy. One problem is that
eigenvalues may collapse. Such problems can be solved with more refined formulations of the
method [59].

DMRG

The DMRG technique [61] has become one of the standard numerical methods for quantum
lattice calculations in recent years [62, 63]. Its basic idea is the reduction of Hilbert space
while focusing on the accuracy of a target state. For this purpose the system is divided into
subunits – blocks – which are represented by reduced sets of basis states. The dimensionm of
the truncated block Hilbert space is a major input parameterof the method and to a large extent
determines its accuracy.
DMRG is best suited for chain-like structures. Many accurate results have been achieved by
applying DMRG to various (quasi-)one-dimensional systems[64, 56, 65]. The best results were
found for the limit of infinite chains with open boundary conditions. It is commonly accepted
that DMRG reaches maximum accuracy when it is applied to systems with a small number of
interactions between the blocks, e. g. systems with only nearest-neighbor interaction [62].
It is not a priori clear how good results for finite systems like magnetic molecules are4. Such
systems are usually not chain-like, so in order to carry out DMRG calculations a mapping onto
a one-dimensional structure has to be performed [62]. Sincethe spin array consists of a count-
able number of spins, any arbitrary numbering is already a mapping onto a one-dimensional
structure. However, even if the original system had only nearest-neighbor exchange, the new
one-dimensional system has many long-range interactions depending on the way the spins are
enumerated. Therefore, a numbering which minimizes long range interactions is preferable.
Fig. 6 shows the graph of interactions for the molecule{Mo72Fe30} which we want to consider
as an example in the following [66].
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Fig. 6: One-dimensional projection of the icosidodecahedron: thelines represent interactions.

For finite systems a block algorithm including sweeps, whichis similar to the setup in White’s
original article [61], has turned out to be most efficient. Two blocks are connected via two
single spin sites, these four parts form the superblock see Fig. 7.
For illustrative purposes we use a simple Heisenberg Hamiltonian, compare (2). The Hamilto-
nian is invariant under rotations in spin space. Therefore,the total magnetic quantum number

4Work done with Matthias Exler, Universität Osnabrück, Germany.
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NN−121 p+1p

Fig. 7: Block setup for DMRG “sweep” algorithm: The whole system ofN spins constitutes
the superblock. The spins{1, 2, . . . , p} belong to the left block, the other spins{p+ 1, . . . , N}
to the right block.
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Fig. 8: Two-dimensional projection of the icosidodecahedron, thesite numbers are those used
in our DMRG algorithm.

M is a good quantum number and we can perform our calculation ineach orthogonal subspace
H(M) separately.
Since it is difficult to predict the accuracy of a DMRG calculation, it is applied to an exactly
diagonalizable system first. The most realistic test systemfor the use of DMRG for{Mo72Fe30}
is the icosidodecahedron with spinss = 1/2. This fictitious molecule, which possibly may be
synthesized with vanadium ions instead of iron ions, has thesame structure as{Mo72Fe30},
but the smaller spin quantum number reduces the dimension ofthe Hilbert space significantly.
Therefore a numerically exact determination of low-lying levels using a Lanczos method is
possible [67]. These results are used to analyze the principle feasibility and the accuracy of the
method.
The DMRG calculations were implemented using the enumeration of the spin sites as shown in
Figs. 6 and 8. This enumeration minimizes the average interaction length between two sites.
In Fig. 9 the DMRG results (crosses) are compared to the energy eigenvalues (circles) deter-
mined numerically with a Lanczos method [67, 66]. Very good agreement of both sequences,
with a maximal relative error of less than 1% is found. Although the high accuracy of one-
dimensional calculations (often with a relative error of the order of10−6) is not achieved, the
result demonstrates that DMRG is applicable to finite 2D spinsystems. Unfortunately, increas-
ingm yields only a weak convergence of the relative error, which is defined relative to the width
of the spectrum

ǫ (m) =
EDMRG (m) −E0

|EAF
0 −EF

0 |
. (35)

The dependence for a quasi two-dimensional structure like the icosidodecahedron is approx-
imately proportional to1/m (see Fig. 10). Unfortunately, such weak convergence is charac-
teristic for two-dimensional systems in contrast to one-dimensional chain structures, where the
relative error of the approximate energy was reported to decay exponentially withm [61]. Nev-
ertheless, the extrapolated ground state energy fors = 1/2 deviates only byǫ = 0.7 % from the
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Fig. 9: Minimal energy eigenvalues of thes = 1/2 icosidodecahedron. The DMRG result with
m = 60 is depicted by crosses, the Lanczos values by circles. The rotational band is discussed
in subsection 3.4.

ground state energy determined with a Lanczos algorithm.
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Fig. 10: Dependence of the approximate ground state energy on the DMRG parameterm. E0

is the true ground state energy in the cases = 1/2 and the extrapolated one fors = 5/2.

The major result of the presented investigation is that the DMRG approach delivers acceptable
results for finite systems like magnetic molecules. Nevertheless, the accuracy known from one-
dimensional systems is not reached.

Spin-coherent states

Spin-coherent states [68] provide another means to either treat a spin system exactly and inves-
tigate for instance its dynamics [69] or to use spin coherentstates in order to approximate the
low-lying part of the spectrum. They are also used in connection with path integral methods. In
the following the basic ideas and formulae will be presented.
The obvious advantage of spin-coherent states is that they provide a bridge between classical
spin dynamics and quantum spin dynamics. Spin coherent states are very intuitive since they
parameterize a quantum state by the expectation value of thespin operator, e. g. by the two
angles which represent the spin direction.
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Spin coherent states| z 〉 are defined as

| z 〉 =
1

(1 + |z|2)s

2s
∑

p=0

√

(

2s

p

)

zp | s,m = s− p 〉 , z ∈ C . (36)

In this definition spin-coherent states are characterized by the spin lengths and a complex value
z. The states (36) are normalized but not orthogonal

〈 z | z 〉 = 1 , 〈 y | z 〉 =
(1 + y∗z)2s

(1 + |y|2)s(1 + |z|2)s
.

Spin-coherent states provide a basis in single-spin Hilbert space, but they form an overcomplete
set of states. Their completeness relation reads

1∼ =
2s+ 1

π

∫

d2z
| z 〉〈 z |

(1 + |z|2)2
, d2z = dRe(z) dIm(z) . (37)

The intuitive picture of spin-coherent states becomes obvious if one transforms the complex
numberz into angles on a Riemann sphere

z = tan(θ/2)eiφ , 0 ≤ θ < π , 0 ≤ φ < 2π . (38)

Thus, spin-coherent states may equally well be representedby two polar anglesθ andφ. Then
the expectation value of the spin operator~s

∼
is simply

〈 θ, φ | ~s
∼
| θ, φ 〉 = s





sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)



 . (39)

Using (38) the definition of the states| θ, φ 〉 which is equivalent to Eq. (36) is then given by

| θ, φ 〉 =
2s
∑

p=0

√

(

2s

p

)

[cos(θ/2)](2s−p) [eiφ sin(θ/2)
]p | s,m = s− p 〉 (40)

and the completeness relation simplifies to

1∼ =
2s+ 1

4π

∫

dΩ | θ, φ 〉〈 θ, φ | . (41)

Product states of spin-coherent states span the many-spin Hilbert space. A classical ground
state can easily be translated into a many-body spin-coherent state. One may hope that this
state together with other product states can provide a useful set of linearly independent states in
order to approximate low-lying states of systems which are too big to handle otherwise. But it
is too early to judge the quality of such approximations.

3.3 Evaluation of thermodynamic observables

For the sake of completeness we want to outline how basic observables can be evaluated both

as function of temperatureT and magnetic fieldB. We will assume that
[

H
∼
, S
∼z

]

= 0 for this
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part, so that the energy eigenvectors| ν 〉 can be chosen as simultaneous eigenvectors ofS
∼z

with eigenvaluesEν(B) andMν . The energy dependence ofEν(B) onB is simply given by
the Zeeman term. IfH

∼
andS

∼z do not commute the respective traces for the partition function
and thermodynamic means have to be evaluated starting from their general definitions.
The partition function is defined as follows

Z(T,B) = tr
{

e−βH
∼

}

=
∑

ν

e−βEν(B) . (42)

Then the magnetization and the susceptibility per moleculecan be evaluated from the first and
the second moment ofS

∼z

M(T,B) = − 1

Z
tr
{

gµBS∼ze
−βH

∼

}

(43)

= −gµB

Z

∑

ν

Mν e−βEν(B)

χ(T,B) =
∂M(T,B)

∂B
(44)

=
(gµB)2

kBT

{

1

Z

∑

ν

M2
ν e−βEν(B) −

(

1

Z

∑

ν

Mν e−βEν(B)

)2}

.

In a similar way the internal energy and the specific heat are evaluated from first and second
moment of the Hamiltonian

U(T,B) = − 1

Z
tr
{

H
∼

e−βH
∼

}

(45)

= − 1

Z

∑

ν

Eν(B) e−βEν(B)

C(T,B) =
∂U(T,B)

∂B
(46)

=
1

kBT 2

{

1

Z

∑

ν

(Eν(B))2 e−βEν(B) −
(

1

Z

∑

ν

Eν(B) e−βEν(B)

)2}

.

3.4 Properties of spectra

In the following chapter I am discussing some properties of the spectra of magnetic molecules
with isotropic and antiferromagnetic interaction.

Non-bipartite spin rings

With the advent of magnetic molecules it appears to be possible to synthesize spin rings with
an odd number of spins. Although related to infinite spin rings and chains such systems have
not been considered mainly since it does not really matter whether an infinite ring has an odd or
an even number of spins. In addition the sign rule of Marshalland Peierls [70] and the famous
theorems of Lieb, Schultz, and Mattis [71, 72] provided valuable tools for the understanding of
even rings which have the property to be bipartite and are thus non-frustrated. These theorems
explain the degeneracy of the ground states in subspacesH(M) as well as their shift quantum
numberk or equivalently crystal momentum quantum numberpk = 2πk/N .
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s N

2 3 4 5 6 7 8 9 10

1.5 0.5 1 0.747 0.934 0.816 0.913 0.844 0.903 E0/(NJ)
1
2

1 4 1 4 1 4 1 4 1 deg
0 1/2 0 1/2 0 1/2 0 1/2 0 S

1 1, 2 0 1, 4 3 2, 5 0 2, 7 5 k

4.0 3.0 2.0 2.236 1.369 2.098 1.045 1.722 0.846 ∆E/|J |
1
2

3 4 3 2 3 8 3 8 3 deg
1 3/2 1 1/2 1 3/2 1 3/2 1 S

0 0 2 0 0 1, 6 4 3, 6 0 k

4 2 3 2.612 2.872 2.735 2.834 2.773 2.819 E0/(NJ)

1 1 1 1 1 1 1 1 1 1 deg
0 0 0 0 0 0 0 0 0 S

0 0 0 0 0 0 0 0 0 k

4.0 2.0 2.0 1.929 1.441 1.714 1.187 1.540 1.050 ∆E/|J |
1 3 9 3 6 3 6 3 6 3 deg

1 1 1 1 1 1 1 1 1 S

1 0, 1, 2 2 2, 3 3 3, 4 4 4, 5 5 k

Table 1: Properties of ground and first excited state of AF Heisenbergrings for variousN and
s: ground state energyE0, gap∆E, degeneracydeg, total spinS and shift quantum numberk.

Nowadays exact diagonalization methods allow to evaluate eigenvalues and eigenvectors ofH
∼

for small even and odd spin rings of various numbersN of spin sites and spin quantum numbers
s where the interaction is given by antiferromagnetic nearest neighbor exchange [52, 53, 54, 73,
74, 75]. Although Marshall-Peierls sign rule and the theorems of Lieb, Schultz, and Mattis do
not apply to non-bipartite rings, i. e. frustrated rings with oddN , it turns out that such rings
nevertheless show astonishing regularities5. Unifying the picture for even and oddN , we find
for the ground state without exception [74, 75]:

1. The ground state belongs to the subspaceH(S) with the smallest possible total spin quan-
tum numberS; this is eitherS = 0 for N ·s integer, then the total magnetic quantum
numberM is also zero, orS = 1/2 for N ·s half integer, thenM = ±1/2.

2. If N ·s is integer, then the ground state is non-degenerate.

3. If N ·s is half integer, then the ground state is fourfold degenerate.

4. If s is integer orN ·s even, then the shift quantum number isk = 0.

5. If s is half integer andN ·s odd, then the shift quantum number turns out to bek = N/2.

6. If N · s is half integer, thenk = ⌊(N + 1)/4⌋ andk = N − ⌊(N + 1)/4⌋ is found.
⌊(N + 1)/4⌋ symbolizes the greatest integer less or equal to(N + 1)/4.

5Work done with Klaus Bärwinkel and Heinz-Jürgen Schmidt,Universität Osnabrück, Germany.
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s N

2 3 4 5 6 7 8 9 10

7.5 3.5 6 4.973 5.798 5.338 5.732 5.477 5.704†† E0/(NJ)
3
2

1 4 1 4 1 4 1 4 1 deg
0 1/2 0 1/2 0 1/2 0 1/2 0 S

1 1, 2 0 1, 4 3 2, 5 0 2, 7 5 k

4.0 3.0 2.0 2.629 1.411 2.171 1.117 1.838 0.938†† ∆E/|J |
3
2

3 16 3 8 3 8 3 8 3 deg
1 3/2 1 3/2 1 3/2 1 3/2 1 S

0 0, 1, 2 2 2, 3 0 1, 6 4 3, 6 0 k

12 6 10 8.456 9.722 9.045 9.630 9.263†† 9.590†† E0/(NJ)

2 1 1 1 1 1 1 1 1 1 deg
0 0 0 0 0 0 0 0 0 S

0 0 0 0 0 0 0 0 0 k

4.0 2.0 2.0 1.922 1.394 1.652 1.091 1.431†† 0.906†† ∆E/|J |
2 3 9 3 6 3 6 3 6 3 deg

1 1 1 1 1 1 1 1 1 S

1 0, 1, 2 2 2, 3 3 3, 4 4 4, 5 5 k

17.5 8.5 15 12.434 14.645 13.451 14.528† 13.848†† 14.475†† E0/(NJ)
5
2

1 4 1 4 1 4 1 4 1 deg
0 1/2 0 1/2 0 1/2 0 1/2 0 S

1 1, 2 0 1,4 3 2, 5 0 2, 7 5 k

Table 2: Properties of ground and first excited state of AF Heisenbergrings for variousN
ands (continuation): ground state energyE0, gap∆E, degeneracydeg, total spinS and shift
quantum numberk. † – O. Waldmann, private communication.†† – projection method [55].

In the case ofs = 1/2 one knows thek-quantum numbers for allN via the Bethe ansatz
[54, 73], and for spins = 1 and evenN thek quantum numbers are consistent with Ref. [53].
It appears that for the properties of the first excited state such rules do not hold in general, but
only for “high enough”N > 5 [75]. Then, as can be anticipated from tables 1 and 2, we can
conjecture that

• if N is even, then the first excited state hasS = 1 and is threefold degenerate, and

• if N is odd and the single particle spin is half-integer, then thefirst excited state has
S = 3/2 and is eightfold degenerate, whereas

• if N is odd and the single particle spin is integer, then the first excited state hasS = 1
and is sixfold degenerate.

Considering relative ground states in subspacesH(M) one also finds – for even as well as for
oddN – that the shift quantum numbersk show a strikingly simple regularity forN 6= 3

k ≡ ±(Ns−M)⌈N
2
⌉ mod N , (47)
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where⌈N/2⌉ denotes the smallest integer greater than or equal toN/2 [76]. For N = 3
and 3s − 2 ≥ |M | ≥ 1 one finds besides the ordinaryk-quantum numbers given by (47)
extraordinaryk-quantum numbers, which supplement the ordinary ones to thecomplete set
{k} = {0, 1, 2}.
For evenN thek values form an alternating sequence0, N/2, 0, N/2, . . . on descending from
the magnon vacuum withM = Ns as known from the sign-rule of Marshall and Peierls [70].
For oddN it happens that the ordinaryk-numbers are repeated on descending fromM ≤ Ns−1
toM − 1 iff N divides[2(Ns−M) + 1].
Using thek-rule one can as well derive a rule for the relative ground state energies and for the
respectiveS quantum numbers:

• For the relative ground state energies one finds that if thek-number is different in adjacent
subspaces,Emin(S) < Emin(S + 1) holds. If thek-number is the same, the energies could
as well be the same.

• Therefore, ifN (even or odd) does not divide(2(Ns−M) + 1)⌈N/2⌉, then any relative
ground state inH(M) has the total spin quantum numberS = |M |.

• This is always true for the absolute ground state which therefore hasS = 0 forNs integer
andS = 1/2 for Ns half integer.

Thek-rule (47) is founded in a mathematically rigorous way forN even [70, 71, 72],N = 3,
M = Ns, M = Ns − 1, andM = Ns− 2 [76]. An asymptotic proof for large enoughN can
be provided for systems with an asymptotically finite excitation gap, i. e. systems with integer
spins for which the Haldane conjecture applies [77, 78]. In all other cases numerical evidence
was collected and thek-rule as a conjecture still remains a challenge [76].

Rotational bands

For many spin systems with constant isotropic antiferromagnetic nearest neighbor Heisenberg
exchange the minimal energiesEmin(S) form a rotational band, i. e. depend approximately
quadratically on the total spin quantum numberS [79, 80, 81]

Emin(S) ≈ Ea − J
D(N, s)

N
S(S + 1) . (48)

The occurrence of a rotational band has been noted on severaloccasions for an even number of
spins defining a ring structure, e. g. see Ref. [81]. The minimal energies have been described as
“following the Landé interval rule” [28, 29, 30, 32]. However, we6 find that the same property
also occurs for rings with an odd number of spins as well as forthe various polytope config-
urations we have investigated, in particular for quantum spins positioned on the vertices of a
tetrahedron, cube, octahedron, icosahedron, triangular prism, and an axially truncated icosa-
hedron. Rotational modes have also been found in the contextof finite square and triangular
lattices of spin-1/2 Heisenberg antiferromagnets [82, 83].
There are several systems, like spin dimers, trimers, squares, tetrahedra, and octahedra which
possess a strict rotational band since their Hamiltonian can be simplified by quadrature. As an

6Work done together with Marshall Luban, Ames Lab, Iowa, USA.
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example the Heisenberg square, i. e., a ring withN = 4 is presented. Because the Hamilton
operator (23) can be rewritten as

H
∼

= −J
(

~S
∼

2 − ~S
∼

2
13 − ~S

∼
2
24

)

, (49)

~S
∼13 = ~s

∼
(1) + ~s

∼
(3) , ~S

∼24 = ~s
∼
(2) + ~s

∼
(4) , (50)

with all spin operators~S
∼

2, ~S
∼

2
13 and~S

∼
2
24 commuting with each other and withH

∼
, one can directly

obtain the complete set of eigenenergies, and these are characterized by the quantum numbers
S, S13 andS24. In particular, the lowest energy for a given total spin quantum numberS occurs
for the choiceS13 = S24 = 2s

Emin(S) = −J [S (S + 1) − 2 · 2s (2s+ 1)] = E0 − J S (S + 1) , (51)

whereE0 = 4s(2s + 1)J is the exact ground state energy. The various energiesEmin(S) form
a rigorous parabolic rotational band of excitation energies. Therefore, these energies coincide
with a parabolic fit (crosses connected by the dashed line on the l.h.s. of Fig. 11) passing
through the antiferromagnetic ground state energy and the highest energy level, i. e., the ground
state energy of the corresponding ferromagnetically coupled system.

Fig. 11: Energy spectra of antiferromagnetically coupled Heisenberg spin rings (horizontal
dashes). The crosses connected by the dashed line representthe fit to the rotational band ac-
cording to(51), which matches both the lowest and the highest energies exactly. On the l.h.s the
dashed line reproduces the exact rotational band, whereas on the r.h.s. it only approximates it,
but to high accuracy. The solid line on the r.h.s. corresponds to the approximation Eq. (52).

It turns out that an accurate formula for the coefficientD(N, s) of (51) can be developed using
the sublattice structure of the spin array [79]. As an example we repeat the basic ideas for
Heisenberg rings with an even number of spin sites [32]. Suchrings are bipartite and can be
decomposed into two sublattices, labeledA andB, with every second spin belonging to the
same sublattice. The classical ground state (Néel state) is given by an alternating sequence
of opposite spin directions. On each sublattice the spins are mutually parallel. Therefore, a
quantum trial state, where the individual spins on each sublattice are coupled to their maximum
values,SA = SB = Ns/2, could be expected to provide a reasonable approximation tothe true
ground state, especially ifs assumes large values. For rings with evenN the approximation to
the respective minimal energies for each value of the total spin ~S

∼
= ~S

∼A + ~S
∼B is then given by

[32]

Eapprox
min (S) = −4 J

N

[

S(S + 1) − 2
Ns

2

(

Ns

2
+ 1

)]

. (52)
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This approximation exactly reproduces the energy of the highest energy eigenvalue, i. e., the
ground state energy of the corresponding ferromagnetically coupled system (S = Ns). For all
smallerS the approximate minimal energyEapprox

min (S) is bounded from below by the true one
(Rayleigh-Ritz variational principle). The solid curve displays this behavior for the example of
N = 6, s = 3/2 in Fig. 11 (r.h.s.). The coefficient “4” in Eq. (52) is the classical value, i. e. for
each fixed evenN the coefficientD(N, s) approaches 4 with increasings [79].
The approximate spectrum, (52), is similar to that of two spins, ~S

∼A and~S
∼B, each of spin quan-

tum numberNs/2, that are coupled by an effective interaction of strength4J/N . Therefore,
one can equally well say, that the approximate rotational band considered in (52) is associated
with an effective Hamilton operator

H
∼

approx = −4 J

N

[

~S
∼

2 − ~S
∼

2
A − ~S

∼
2
B

]

, (53)

where the two sublattice spins,~S
∼A, ~S∼B, assume their maximal valueSA = SB = Ns/2. Hamil-

tonian (53) is also known as Hamiltonian of the Lieb-Mattis model which describes a system
where each spin of one sublattice interacts with every spin of the other sublattice with equal
strength [72, 84].

Fig. 12: The low-lying levels of a spin ring,N = 6 ands = 5/2 in this example, can be grouped
into the lowest (Land́e) band, the first excited (Excitation) band and the quasi-continuum (QC).
For the spin levels of the L- and E-bandk is given in brackets followed by the energy. Arrows in-
dicate strong transitions from the L-band. Associated numbers give the total oscillator strength
f0 for these transitions. With friendly permission by Oliver Waldmann [81].

It is worth noting that this Hamiltonian reproduces more than the lowest levels in each subspace
H(S). At least for bipartite systems also a second band is accurately reproduced as well as
the gap to the quasi-continuum above, compare Figure 12 and Ref. [81]. This property is
very useful since the approximate Hamiltonian allows the computation of several observables
without diagonalizing the full Hamiltonian.
It is of course of utmost importance whether the band structure given by the approximate Hamil-
tonian (53) persists in the case of frustrated molecules. Itseems that at least the minimal ener-
gies still form a rotational band which is understandable atleast for larger spin quantum num-
berss taking into account that the parabolic dependence of the minimal energies onS mainly
reflects the classical limit for a wide class of spin systems [85].
The following example demonstrates that even in the case of the highly frustrated molecule
{Mo72Fe30} the minimal energies arrange as a “rotational band”7. In the case of{Mo72Fe30}

7Work done with Matthias Exler, Universität Osnabrück, Germany.
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the spin system is decomposable into three sub-lattices with sub-lattice spin quantum numbers
SA, SB, andSC [79, 80]. The corresponding approximate Hamilton operatorreads

H
∼ approx = −J D

N

[

~S
∼

2 − γ
(

~S
∼

2
A + ~S

∼
2
B + ~S

∼
2
C

)]

, (54)

where ~S
∼

is the total spin operator and the others are sub-lattice spin operators.D andγ are
allowed to deviate from their respective classical values,D = 6 andγ = 1, in order to correct
for finite s.
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Fig. 13: DMRG eigenvalues and lowest rotational band of thes = 5/2 icosidodecahedron;
m = 60 was used except for the lowest and first exited level which were calculated withm =
120.

We use the DMRG method to approximate the lowest energy eigenvalues of the full Hamiltonian
and compare them to those predicted by the rotational band hypothesis (54). Fig. 13 shows the
results and a fit to the lowest rotational band. Assuming the same dependence onm as in
the s = 1/2 case, the relative error of the DMRG data should also be less than 1%. The
agreement between the DMRG energy levels and the predicted quadratic dependence is very
good. Nevertheless, it remains an open question whether higher lying bands are present in such
a highly frustrated compound.

Magnetization jumps

Fig. 14: Structure of the icosidodecahedron (l.h.s.) and the cuboctahedron (r.h.s.).

Although the spectra of many magnetic molecules possess a rotational band of minimal energies
Emin(S) and although in the classical limit, where the single-spin quantum numbers goes to
infinity, the functionEmin(S) is even an exact parabola if the system has co-planar ground
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states [85], we8 find that for certain coupling topologies, including the cuboctahedron and the
icosidodecahedron (see Fig. 14), that this rule is violatedfor high total spins [67, 86]. More
precisely, for the icosidodecahedron the last four points of the graph ofEmin versusS, i. e. the
points withS = Smax to S = Smax − 3, lie on a straight line

Emin(S) = 60Js2 − 6Js(30s− S) . (55)

An analogous statement holds for the last three points of thecorresponding graph for the cuboc-
tahedron. These findings are based on numerical calculations of the minimal energies for several
s both for the icosidodecahedron as well as for the cuboctahedron. For both and other systems
a rigorous proof of the high spin anomaly can be given [67, 87].
The idea of the proof can be summarized as follows: A necessary condition for the anomaly is
certainly that the minimal energy in the one-magnon space isdegenerate. Therefore, localized
one-magnon states can be constructed which are also of minimal energy. When placing a second
localized magnon on the spin array there will be a chance thatit does not interact with the
first one if a large enough separation can be achieved. This new two-magnon state is likely
the state of minimal energy in the two-magnon Hilbert space because for antiferromagnetic
interaction two-magnon bound states do not exist. This procedure can be continued until no
further independent magnon can be placed on the spin array. In a sense the system behaves as if
it consists of non-interacting bosons which, up to a limiting number, can condense into a single-
particle ground state. In more mathematical terms: In orderto prove the high-spin anomaly
one first shows an inequality which says that all points(S,Emin(S)) lie above or on the line
connecting the last two points. For specific systems as thosementioned above what remains to
be done is to construct particular states which exactly assume the values ofEmin corresponding
to the points lying on the bounding line, then these states are automatically states of minimal
energy.

Fig. 15: Icosidodecahedron: L.h.s. – minimal energy levelsEmin(S) as a function of total spin
S. R.h.s. – magnetization curve atT = 0 [67].

The observed anomaly – linear instead of parabolic dependence – results in a corresponding
jump of the magnetization curveM versusB, see Fig. 15. In contrast, for systems which obey
the Landé interval rule the magnetization curve at very lowtemperatures is a staircase with
equal steps up to the highest magnetization. The anomaly could indeed be observed in magneti-
zation measurements of the Keplerate molecules{Mo72Fe30}. Unfortunately, the magnetization
measurements [36, 80] performed so far suffer from too high temperatures which smear out the
anomaly.

8Work done with Heinz-Jürgen Schmidt, Universität Osnabrück, Andreas Honecker, Universität Braunschweig,
Johannes Richter and Jörg Schulenburg, Universität Magdeburg, Germany.



X5.24 Jürgen Schnack

Nevertheless, it may be possible to observe truly giant magnetization jumps in certain two-
dimensional spin systems which possess a suitable coupling(e. g. Kagomé) [86]. In such
systems the magnetization jump can be of the same order as thenumber of spins, i. e. the jump
remains finite – or in other words is macroscopic – in the thermodynamic limitN → ∞. Thus,
this effect is a true macroscopic quantum effect.

4 Dynamics

In this section I would like to outline two branches – tunneling and relaxation – where the
dynamics of magnetic molecules is investigated. The section is kept rather introductory since
the field is rapidly evolving and it is too early to draw a final picture on all the details of the
involved processes.

4.1 Tunneling

Tunneling dynamics has been one of the corner stones in molecular magnetism since its very
early days, see e. g. [88, 21, 24, 89, 90].
The subject can roughly be divided into two parts, one deals with tunneling processes of the
magnetization in molecules possessing a high ground state spin and an anisotropy barrier, the
second deals with the remaining tunneling processes, e. g. in molecules which have anS = 0
ground state.

Fig. 16: Sketch of the tunneling barrier for a high spin molecule withS = 10, l.h.s. without
magnetic field, r.h.s. with magnetic field, compare Eq. (5). The arrows indicate a possible
resonant tunneling process.

As already mentioned in section 3.1 some molecules like Mn12 and Fe8 possess a high ground
state spin. Since the higher lying levels are well separatedfrom the low-lyingS = 10 levels
a single-spin Hamiltonian (5), which includes an anisotropy term, is appropriate. Figure 16
sketches the energy landscape for an anisotropy term which is quadratic inS

∼z. If the Hamilto-
nian includes terms like a magnetic field inx-direction that do not commute withS

∼z resonant
tunneling is observed between states|S,M 〉 and |S,−M 〉. This behavior is depicted on the
l.h.s. of Fig. 16 for the transition betweenM = −10 andM = 10. If an additional magnetic
field is applied inz-direction the quadratic barrier acquires an additional linear Zeeman term
and is changed like depicted on the r.h.s. of Fig. 16. Now tunneling is possible between states
of different|M |, see e. g. [91].
It is rather simple to model the tunneling process in the model Hilbert space ofS = 10. i. e.
a space with dimension2S + 1 = 21. Nevertheless, in a real substance the tunneling process
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is accompanied and modified by other influences. The first major factor is temperature which
may enhance the process, this leads to thermally assisted tunneling [92]. Each such substance
hosts phonons which modify the tunneling process, too, resulting in phonon assisted tunneling
[93, 94, 95, 96]. Then local dipolar fields and nuclear hyperfine fields may strongly affect the
relaxation in the tunneling regime [6]. In addition there may be topological quenching due to
the symmetry of the material [97, 98, 99]. And last but not least describing such complicated
molecules not in effective single-spin models but in many-spin models is still in an unsatisfac-
tory state, compare [100].

⇔

Fig. 17: Sketch of the tunneling process between Néel-like states on a spin ring. Without loss of
generality the state on the l.h.s. will be denoted by|Néel, 1 〉 and the state on the r.h.s. will be
denoted by|Néel, 2 〉.

Another kind of tunneling is considered for Heisenberg spinrings with uniaxial single-ion
anisotropy. Classically the ground state of even rings likeNa:Fe6 and Cs:Fe8 is given by a
sequence of spin up and down like in Fig. 17. It now turns out that such a Néel-like state, which
is formulated in terms of spin-coherent states (40), contributes dominantly to the true ground
state as well as to the first excited state if the anisotropy islarge enough [69]. Thus it is found
that the ground state|E0 〉 and the first excited state|E1 〉 can be approximated as

|E0 〉 ≈ 1√
2

( |Néel, 1 〉 ± |Néel, 2 〉) (56)

|E1 〉 ≈ 1√
2

( |Néel, 1 〉 ∓ |Néel, 2 〉) ,

where the upper sign is appropriate for rings where the number of spinsN is a multiple of 4,
e. g.N = 8, and the lower sign is for all other evenN .
Therefore, the tunneling frequency is approximately givenby the gap between ground and first
excited state. Experimentally, such a tunnel process is hard to observe, especially since ESR is
sensitive only to the total spin. What would be needed is a local probe like NMR. This could be
accomplished by replacing one of the iron ions by another isotope.
The tunneling process was further analyzed for various values of the uniaxial single-ion anisotropy
[101]. Since in such a case the cyclic shift symmetry persists,k is still a good quantum number.
Therefore, mixing of states is only allowed between states with the samek quantum number.
This leads to the conclusion that the low-temperature tunneling phenomena can be understood
as the tunneling of the spin vector between different rotational modes with∆S = 2, compare
Fig. 18 and the subsection on rotational bands on page 19.

4.2 Relaxation dynamics

In a time-dependent magnetic field the magnetization tries to follow the field. Looking at this
process from a microscopic point of view, one realizes that,if the Hamiltonian would commute
with the Zeeman term, no transitions would occur, and the magnetization would not change a
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Fig. 18: Energy spectrum of spin rings withN = 6 and vanishing anisotropy at two magnetic
fields drawn as a function of the magnetic quantum numberM . The dashed curves represent the
lowest-lying parabolasEmin(M) discussed in section 3.4. A white or black circle indicates that
a state belongs tok = 0 or k = N/2, compare Fig. 12. States belonging to one spin multiplet
are located on straight lines like that plotted in panel (a) for theS = 4 multiplet. With friendly
permissions by Oliver Waldmann [101].

tiny bit. There are basically two sources which permit transitions: non-commuting parts in the
spin Hamiltonian and interactions with the surrounding. Inthe latter case the interaction with
phonons seems to be most important.
Since a complete diagonalization of the full Hamiltonian including non-commuting terms as
well as interactions like the spin-phonon interaction is practically impossible, both phenomena
are modeled with the help of rate equations.

M

M M

M

B

E

p

1

1

2

2

∆

Fig. 19: Schematic energy spectrum in the vicinity of an avoided level crossing. The formula by
Landau, Zener, and Stückelberg (57) approximates the probabilityp for the tunneling process
fromM1 toM2.

If we start with a HamiltonianH
∼ 0, which may be the Heisenberg Hamiltonian and add a non-

commuting termH
∼

′ like anisotropy the eigenstates of the full Hamiltonian aresuperpositions of
those ofH

∼ 0. This expresses itself in avoided level crossings where thespectrum ofH
∼ 0 would

show level crossings, compare Fig. 19. Transitions betweeneigenstates ofH
∼ 0, which may have

goodM quantum numbers, can then effectively be modeled with the formula by Landau, Zener,
and Stückelberg [102, 103, 104, 105, 106]

p = 1 − exp

{

− π∆2

2~gµB|M1 −M2| d
dt
B

}

. (57)

∆ denotes the energy gap at the avoided level crossing.
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The effect of phonons is taken into account by means of two principles: detailed balance, which
models the desire of the system to reach thermal equilibriumand energy conservation, which
takes into account that the energy released or absorbed by the spin system must be absorbed
or released by the phonon system and finally exchanged with the thermostat. The interesting
effects arise since the number of phonons is very limited at temperatures in the Kelvin-range
or below, thus they may easily be used up after a short time (phonon bottleneck) and have to
be provided by the thermostat around which needs a characteristic relaxation time. Since this
all happens in a time-dependent magnetic field, the Zeeman splittings change all the time and
phonons of different frequency are involved at each time step. In addition the temperature of
the spin system changes during the process because the equilibration with the thermostat (liq.
Helium) is not instantaneous. More accurately the process is not in equilibrium at all, especially
for multi-level spin systems. Only for two-level systems the time-dependent occupation can be
translated into an apparent temperature. In essence the retarded dynamics leads to distinct hys-
teresis loops which have the shape of a butterfly [107, 108, 109]. For more detailed information
on dissipative two-level systems the interested reader is referred to Ref. [110, 109].

5 Magnetocalorics

The mean (internal) energy, the magnetization and the magnetic field are thermodynamic ob-
servables just as pressure and volume. Therefore, we can design thermodynamic processes
which work with magnetic materials as a medium. This has of course already been done for
a long time. The most prominent application is magnetization cooling which is mainly used
to reach sub-Kelvin temperatures [111]. The first observation of sub-Kelvin temperatures is a
nice example of how short an article can be to win the Nobel prize (Giauque, Chemistry, 1949).
Meanwhile magnetization cooling is used in ordinary refrigerators.

Fig. 20: The first observation of sub-Kelvin temperatures [111] is a nice example of how short
an article can be to win the Nobel prize (Giauque, Chemistry,1949).

In early magnetocaloric experiments simple refrigerants like paramagnetic salts have been used.
We will therefore consider such examples first.
For a paramagnet the Hamiltonian consists of the Zeeman termonly. We then obtain for the
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partition function

Z(T,B,N) =

{

sinh[βgµBB(s+ 1/2)]

sinh[βgµBB/2]

}N

. (58)

Then the magnetization is

M(T,B,N) = NgµB {(s + 1/2)coth[βgµBB(s+ 1/2)] − 1/2sinh[βgµBB/2]} , (59)

and the entropy reads

S(T,B,N) = NkB ln

{

sinh[βgµBB(s+ 1/2)]

sinh[βgµBB/2]

}

− kBβBM(T,B,N) . (60)

Besides their statistical definition both quantities follow from the general thermodynamic rela-
tionship

dF =

(

∂ F

∂ T

)

B

dT +

(

∂ F

∂ B

)

T

dB = −SdT −MdB , (61)

whereF (T,B,N) = −kBT ln[Z(T,B,N)].
Looking at Eq. (58) it is obvious that all thermodynamic observables for a paramagnet depend
on temperature and field via the combinationB/T , and so does the entropy. Therefore, an
adiabatic demagnetization (S = const) means that the ratioB/T has to remain constant, and
thus temperature shrinks linearly with field, i.e.

(

∂ T

∂ B

)para

S

=
T

B
. (62)

This situation changes completely for an interacting spin system. Depending on the interactions
the adiabatic cooling rate∂ T

∂ B
can be smaller or bigger than the paramagnetic one (62) and even

change sign, i.e. one would observe heating during demagnetization. It is nowadays understood
that the cooling rate acquires extreme values close to phasetransitions due to the excess entropy
associated with such processes [112, 113, 114, 115].

E

B

S=0, M=0

S=1, M=0

S=1, M=−1

S=1, M=+1

Fig. 21: L.h.s.: Sketch of an antiferromagnetically coupled spin dimer. R.h.s.: Dependence of
the energy levels on magnetic field for an antiferromagnetically coupled spin-1/2 dimer. At the
critical fieldBc the lowest triplet level crosses the ground state level withS = 0.

In the following this statement will be made clear by discussing the example of a simple anti-
ferromagnetically coupled spin-1/2 dimer (Fig. 21, l.h.s.). In a magnetic field such a system
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Fig. 22: L.h.s.: Entropy of the dimer (Fig. 21) as function ofB andT . R.h.s.: Heat capacity of
the dimer as function ofB andT .

experiences a “quantum phase transition” if the lowest triplet level crosses the original ground
state withS = 0, see Fig. 21, r.h.s.. Although one would hesitate to call such an ordinary ground
state level crossing quantum phase transition it nevertheless is one. AtT = 0 the magnetization
M(T = 0, B) is a non-analytic function of the magnetic fieldB. At the critical fieldBc where
the levels cross the magnetization exhibits a step.
In addition the entropy, which atT = 0 is zero for the non-degenerate ground state acquires a
finite value at the critical fieldBc due to the degeneracy of the crossing levels. This enhancement
remains present even at temperaturesT > 0, compare Fig. 22, l.h.s.. In addition the heat
capacity varies strongly around the critical field as is shown in Fig. 22, r.h.s..

Fig. 23: Isentrops of the spin dimer. The straight lines show the behavior of a paramagnet for
comparison.B is along thex-axis,T along they-axis.

The behavior of the entropy as well as of the heat capacity explains how the adiabatic cooling
rate

(

∂ T

∂ B

)

S

= −T
(

∂ S
∂ B

)

T

C
(63)

depends on field and temperature. Figure 23 shows the isentropes of the antiferromagnetically
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coupled dimer both as function of fieldB and temperatureT . The straight lines show the
behavior of a paramagnet for comparison. Three regions are highlighted.

• a: For low fields and high temperatures∂ T
∂ B

is smaller than for the paramagnet.

• b: For high fields and high temperatures the interacting system assumes the paramagnetic
limit, i.e. ∂ T

∂ B
is the same in both systems.

• c: For low temperatures and fields just above the critical field ∂ T
∂ B

is much bigger than the
cooling rate of the paramagnet.

• Not highlighted but nevertheless very exciting is the region at low temperature just below
the critical field where the “cooling” rate∂ T

∂ B
has the opposite sign, i.e. upon demagnetiz-

ing the system heats up and upon magnetizing the system coolsdown.

The rate∂ T
∂ B

(63) depends directly on the derivative of the entropy with respect to the magnetic
field. Therefore, it is clear that the effect will be enhancedif a high degeneracy can be ob-
tained at some critical field. This is indeed possible in several frustrated materials where giant
magnetization jumps to saturation are observed [86, 116, 114, 115].

Fig. 24: Isentropes of an antiferromagnetically coupled spin-1/2 cuboctahedron (l.h.s.) in
comparison to the isentropes of an antiferromagnetically coupled spin ring of 12 spins with
s = 1/2 (r.h.s.). The structure of the cuboctahedron is shown in Fig. 14 (r.h.s.).

The following Figure 24 compares isentropes of an antiferromagnetically coupled spin-1/2
cuboctahedron (l.h.s.) with the isentropes of an antiferromagnetically coupled spin ring of 12
spins withs = 1/2 (r.h.s.). It is clearly visible that the cuboctahedral spinsystem has steeper
isentropes than the ring system, and the reason is that the cuboctahedron features a larger jump
to magnetization saturation (∆M = 2) than the spin ring (∆M = 1) which is connected with
an enhanced degeneracy and thus higher entropy.
Summarizing, one can say that low-dimensional frustrated spin systems and especially magnetic
molecules are substances with an interesting magnetocaloric behavior and may turn out to be
useful new refrigerants for special applications.
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[59] J. K. Cullum and R. A. Willoughby,Lánczos Algorithms for Large Symmetric Eigenvalue
Computations, vol. I (Birkhäuser, Boston, 1985).
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