Basic Magnetism

1. Paramagnetism and Diamagnetism (macroscopic)

external magnetic field \vec{H} N $\vec{B_i}$ $\vec{B_o}$ $\vec{B_i}$ $\vec{B_i$

 \vec{B} : magnetic induction (magnetic field intensity inside sample) $\vec{B} = \vec{H} + 4\pi \vec{M}$

 \vec{M} : intensity of magnetization (magnetic moment $\vec{\mu}$ / unit volume)

$$B_i < B_o \qquad \qquad B_i > B_o$$

 $B_i = \mu_r \bullet B_o$ μ_r : relative magnetic permeability

$$\mu_{\rm r} < 1$$
 $\mu_{\rm r} > 1$

$$B_i = B_o + B'$$

$$B' = \chi_v \bullet B_o \qquad \qquad \chi_v: \text{ volume susceptibility (unit less)}$$

$$\chi_{v} < 0 \qquad \qquad \chi_{v} > 0$$

measurement: Faraday balance, SQUID, ...

 χ_m^{mes} : molar susceptibility

 $\chi_m^{mes} = \chi_m^{para} + \chi_m^{dia} \qquad \chi_m^{dia}$ from tables, Pascal's constants

$$\chi_{m}^{para} = \chi_{m}^{mes} - \chi_{m}^{dia}$$

2. Paramagnetism 2.1. Microscopic interpretation

• must relate macroscopic susceptibility to the magnetic dipole moments $\vec{\mu}$ of N_A molecules

classical

total energy of system lowered by external magnetic field

$$M = -\frac{\partial E}{\partial \mathsf{H}}$$

 \rightarrow sample attracted into field

quantum mechanics

• molecule with energy levels E_n (n = 1, 2, ...) in the presence of magnetic field $\vec{H} \rightarrow$ microscopic magnetization μ_n

$$\mu_n = -\frac{\partial E_n}{\partial H}$$

macroscopic molar magnetization M_m by partition function: (no approximation)

$$M_m = N_A \frac{\sum_{n} \left(-\frac{\partial E_n}{\partial H} \right) \cdot \exp\left(-\frac{E_n}{kT} \right)}{\sum_{n} \exp\left(-\frac{E_n}{kT} \right)}$$

$$\chi_m = \frac{\partial M_m}{\partial \mathsf{H}}$$

in a weak field: χ_m is independent of H

$$\chi_m = \frac{M_m}{H}$$

2.2. The van Vleck equation

approximation: $E_{n} = E_{n}^{(0)} + E_{n}^{(1)}H + E_{n}^{(2)}H^{2} \quad (+...)$ $\mu_{n} = -\frac{\partial E_{n}}{\partial H} = -E_{n}^{(1)} - 2E_{n}^{(2)}H \quad (-...)$ $M_{m} = N_{A} \frac{\sum_{n} \left(-E_{n}^{(1)} - 2E_{n}^{(2)}H \right) \cdot \exp\left(-\frac{E_{n}^{(0)} + E_{n}^{(1)}H + E_{n}^{(2)}H^{2}}{kT} \right)}{\sum_{n} \exp\left(-\frac{E_{n}^{(0)} + E_{n}^{(1)}H + E_{n}^{(2)}H^{2}}{kT} \right)}$

further approximations:

$$\bullet \quad \frac{H}{kT} \langle \langle 1$$

- $\exp(x) \approx 1 + x$ for $x \langle \langle 1 \rangle$
- for $H \to 0 \implies M \to 0$

$$\sum_{n} \left(-E_n^{(1)} \right) \cdot \exp\left(-\frac{E_n^{(0)}}{kT} \right) = 0$$

- $\bullet \ E_n^{(2)} H^2 \approx 0$
- $\bullet \ E_n^{(2)} E_n^{(1)} \approx 0$

$$M_m = H \cdot N_A \cdot \frac{\sum_{n} \left[\left(\frac{E_n^{(1)^2}}{kT} - 2E_n^{(2)} \right) \cdot \exp\left(-\frac{E_n^{(0)}}{kT} \right) \right]}{\sum_{n} \exp\left(-\frac{E_n^{(0)}}{kT} \right)}$$

$$\chi_m = N_A \cdot \frac{\sum_{n} \left[\left(\frac{E_n^{(1)^2}}{kT} - 2E_n^{(2)} \right) \cdot \exp\left(-\frac{E_n^{(0)}}{kT} \right) \right]}{\sum_{n} \exp\left(-\frac{E_n^{(0)}}{kT} \right)}$$

- need energies of the system under investigation
- plug into equation (Van Vleck or better the partition function)
- calculate χ_m
- compare to experiment and gain insight into the electronic structure of the system under investigation

2.3. $S = \frac{1}{2}$ system, Zeeman effect, Curie law

$$\mu_{\mathsf{B}}gB\hat{S}_{z}\left|\frac{1}{2},-\frac{1}{2}\right\rangle = \mu_{\mathsf{B}}gB*\left(-\frac{1}{2}\right)\left|\frac{1}{2},-\frac{1}{2}\right\rangle \qquad \left|\frac{1}{2},-\frac{1}{2}\right\rangle \qquad -\frac{1}{2}\mu_{\mathsf{B}}gB$$

• $E_n = M_S \mu_B g B$ plug into Van Vleck equation

$$\chi_m = N_A \cdot \frac{\sum_{n} \left[\left(\frac{E_n^{(1)^2}}{kT} - 2E_n^{(2)} \right) \cdot \exp\left(-\frac{E_n^{(0)}}{kT} \right) \right]}{\sum_{n} \exp\left(-\frac{E_n^{(0)}}{kT} \right)}$$

 $E_n = E_n^{(0)} + E_n^{(1)}B + E_n^{(2)}B^2$; $E_n^{(0)} = 0$, $E_n^{(1)} = M_S \mu_B g$, $E_n^{(2)} = 0$

$$\chi = \frac{N_A}{kT} \cdot \frac{M_S = -S}{2S + 1} \quad \text{using} \quad \sum_{i=-n}^n i^2 = \frac{1}{3}(2n+1)(n+1)n$$
$$\chi = \frac{N_A}{3kT} \cdot \mu_B^2 g^2 S(S+1) = \frac{C}{T} \quad \text{mit} \quad C = \frac{N_A}{3k} \cdot \mu_B^2 g^2 S(S+1)$$
Curie law

• effective magnetic moment, μ_{eff} :

$$\frac{\mu_{eff}}{\mu_B} = \sqrt{\frac{3k}{N_A \cdot {\mu_B}^2}} \cdot \sqrt{\chi \cdot T} = 2.827915 \cdot \sqrt{\chi \cdot T} = g_e \sqrt{S(S+1)}$$

- spin-only !!!
- graphical representation calculated for $S = \frac{1}{2}$ and g = 2.00

2.4. Saturation effects and Brillouin function

- general isotropic system with spin state S
- $E = M_S \mu_B g B$ plug into the partition function for M_m

$$M_{m} = -N_{A}g\mu_{B} \frac{\sum_{M_{s}} M_{s} \cdot \exp\left(-\frac{g\mu_{B}BM_{s}}{kT}\right)}{\sum_{M_{s}} \exp\left(-\frac{g\mu_{B}BM_{s}}{kT}\right)}$$
....
$$M_{m} = N_{A}g\mu_{B}S \cdot B_{S}(x) \quad \text{with} \quad x = \frac{g\mu_{B}B}{kT}$$

with
$$B_{S}(x) = \frac{\left(S + \frac{1}{2}\right) \coth\left[x\left(S + \frac{1}{2}\right)\right] - \frac{1}{2} \coth\left(\frac{x}{2}\right)}{S}$$

- Iow x values: linear Curie behavior
 Note: Curie law: M_m ∝ B
- high x values: saturation only $M_s = -S$ populated

2.5. Zero-field splitting: SO coupling in system < cubic symmetry

zero-field spin Hamiltonian

$$\hat{\mathsf{H}} = D(\hat{\mathsf{S}}_z^2 - \frac{1}{3}(S(S+1))) + E(\hat{\mathsf{S}}_x^2 - \hat{\mathsf{S}}_y^2)$$

combined effect of so coupling and symmetry lowering:

from second order perturbation theory in λ LS in D_{4h} : $D = \frac{8\lambda^2 \Delta}{(10Dq)^2}$

2.6. Temperature Independent Paramagnetism TIP

2. Order Zeeman effect

 $\chi_{m}^{mes} = \chi_{m}^{para} + \chi_{m}^{dia}$ (χ_{m}^{para} : positive; χ_{m}^{dia} : negative) $\chi_{m}^{para} = C / T + \chi_{TIP}$

 χ_{TIP} positive !!! and small

• Example: Cu^{II} in octahedral symmetry

$$\chi_{TIP} = \frac{4k^2 N \mu_B^2}{10 D q} = \frac{4 \cdot 0.64 \cdot 0.261}{10000} = 67 \cdot 10^{-6} \text{ cm}^3 \text{mol}^{-1}$$

with $N\mu_B^2$ =0.261, 10 Dq in cm⁻¹ and χ in cm³mol⁻¹ (cgs emu)

compare to $\chi_m^{\text{para}} \sim 1500 \text{ cm}^3 \text{mol}^{-1}$ at 300 K

- famous example: Co^{III} I.s. (d⁶) $\chi_{\text{TIP}} \sim 600 \text{ cm}^3 \text{mol}^{-1}$ (S = 0)
- Note: χ_{TIP} is temperature independent in χ !!!!

effects on μ_{eff} :

$$\mu_{eff} = 2.828 \sqrt{\chi \cdot T} = 2.828 \sqrt{\chi} \cdot \sqrt{T} = const \cdot \sqrt{T}$$

for $\chi_{TIP} = 600 \cdot 10^{-6} \text{ cm}^3 \text{mol}^{-1}$
 $\mu_{eff} = 2.828 \sqrt{600 \cdot 10^{-6} \text{ cm}^3 \text{mol}^{-1} \cdot T} = 1.2 \,\mu_B$ bei 300 K

2.7. Complete treatment of mononuclear systems

$$\hat{\mathsf{H}} = \mu_{\mathsf{B}}g_{x}H_{x}\hat{S}_{x} + \mu_{\mathsf{B}}g_{y}H_{y}\hat{S}_{y} + \mu_{\mathsf{B}}g_{z}H_{z}\hat{S}_{z} + D(\hat{\mathsf{S}}_{z}^{2} - \frac{1}{3}(S(S+1))) + E(\hat{\mathsf{S}}_{x}^{2} - \hat{\mathsf{S}}_{y}^{2})$$

- diagonalization of the spin Hamiltonian matrix
 - \Rightarrow energies
 - \Rightarrow plug into equation for χ_m
 - \Rightarrow fit parameters to experimental χ_m vs. T
 - ⇒ interprete spin Hamiltonian parameters to gain insight into the electronic and thus geometric structure of the complex
- magnetization measurements: effects of zero-field splitting

example: S = 5/2, g = 2.00

D = 0 corresponds to Brillouin function

variable field - variable temperature (VTVH) measurements

 \Rightarrow in some cases, not only magnitude but also sign of zero-field splitting accessible by bulk magnetization measurement

3. Intramolecular exchange couplings 3.1. Introduction

ex.: $[Cu^{II}_{2}(OAc)_{4}(H_{2}O)_{2}]$

$$\mu_{eff} = g\sqrt{S_1(S_1+1) + S_2(S_2+1)} = 2.58 \text{ for } g = 2.11$$

but experiment:

at 0 K no magnetization \rightarrow must have diamagnetic ground state

antiferromagnetic $Cu^{||} Cu^{||} \xrightarrow{E} \qquad \qquad S_{t}=1$ coupling: $ferromagnetic Cu^{||} Cu^{||} \xrightarrow{F} \qquad \qquad S_{t}=0$ ferromagnetic $Cu^{||} Cu^{||} \xrightarrow{E} \qquad \qquad S_{t}=0$ $\int_{S_{1}=1/2} \int_{S_{2}=1/2} \xrightarrow{F} \qquad \qquad S_{t}=0$ $\int_{S_{1}=1/2} \int_{S_{2}=1/2} \xrightarrow{F} \qquad \qquad S_{t}=0$

3.2. Heisenberg-Dirac-van Vleck (HDvV) Operator

$$\hat{\mathbf{H}} = -2J\mathbf{S}_{1}\mathbf{S}_{2}$$

J < 0: antiferromagnetic J > 0: ferromagnetic

$$S_{t} = S_{1} + S_{2}, S_{1} + S_{2} - 1, ..., |S_{1} - S_{2}|$$

$$\mathbf{S}_{t} = \mathbf{S}_{1} + \mathbf{S}_{2}$$

$$\mathbf{S}_{t}^{2} = (\mathbf{S}_{1} + \mathbf{S}_{2})^{2} = \mathbf{S}_{1}^{2} + \mathbf{S}_{2}^{2} + 2\mathbf{S}_{1}\mathbf{S}_{2}$$

$$\mathbf{S}_{1}\mathbf{S}_{2} = \frac{1}{2} \left(\mathbf{S}_{t}^{2} - \mathbf{S}_{1}^{2} - \mathbf{S}_{2}^{2} \right) \quad \text{with} \quad \mathbf{S}^{2} |S\rangle = S(S + 1) |S\rangle$$

$$\hat{H} = -2J\mathbf{S}_{1}\mathbf{S}_{2} = -J \left(\mathbf{S}_{t}^{2} - \mathbf{S}_{1}^{2} - \mathbf{S}_{2}^{2} \right)$$

$$\hat{H} |S_{t}, S_{1}, S_{2}\rangle = -J \left(\mathbf{S}_{t}^{2} - \mathbf{S}_{1}^{2} - \mathbf{S}_{2}^{2} \right) |S_{t}, S_{1}, S_{2}\rangle = E |S_{t}, S_{1}, S_{2}\rangle$$

$$E(S_{t}) = -J \left[S_{t}(S_{t} + 1) - S_{1}(S_{1} + 1) - S_{2}(S_{2} + 1) \right]$$

• General Spin-System

$$E(S_t) = -J[S_t(S_t+1)] = -J[S_t^2 + S_t]$$

$$E(S_t+1) = -J[(S_t+1)(S_t+2)] = -J[(S_t^2 + 3S_t+2)]$$

$$\Delta E = E(S_t+1) - E(S_t) = -J[S_t^2 + S_t] - (-J)[(S_t^2 + 3S_t+2)] =$$

$$= -J[S_t^2 + S_t - S_t^2 - 3S_t - 2] = -J[-2S_t - 2] = -2J(S_t+1)$$
Lande Interval-Regel

- \rightarrow splitting is not equidistant, but increases with increasing S_T
- $S_1 = 5/2$ and $S_2 = 5/2$ (Fe^{III} Fe^{III}) spin system

$$S_{t} = \frac{5}{2} + \frac{5}{2}, \frac{5}{2} + \frac{5}{2} - 1, ..., \left| \frac{5}{2} - \frac{5}{2} \right|$$

= 5,4,3,2,1,0
$$E(S_{t}) = -J[S_{t}(S_{t}+1)]$$

$$E(S_{t} = 0) = -J[0(0+1)] = 0$$

$$E(S_{t} = 1) = -J[1(1+1)] = -2J$$

$$E(S_{t} = 2) = -J[2(2+1)] = -6J$$

$$E(S_{t} = 3) = -J[3(3+1)] = -12J$$

$$E(S_{t} = 4) = -J[4(4+1)] = -20J$$

$$E(S_{t} = 5) = -J[5(5+1)] = -30J$$

$$-6J$$

$$-2J$$

$$-6J$$

$$-2J$$

$$-6J$$

$$-2J$$

$$-6J$$

$$-2J$$

$$-6J$$

$$-2J$$

$$-2J$$

$$-6J$$

$$-2J$$

$$-2J$$

$$-6J$$

$$-2J$$

$$-2$$

spin ladder

- OH₂ bridge $J \sim -2 \text{ cm}^{-1}$ - OH⁻ bridge $J \sim -10 \text{ cm}^{-1}$ - O²⁻ bridge $J \sim -100 \text{ cm}^{-1}$

Magnetism - Structure - Relationship

Why ? \Rightarrow mechanism of interaction

3.3. Bleaney-Bowers Equations

B. Bleaney, K. D. Bowers, Proc. R. Soc. Lond. 1952, A214, 451

Goal: equation for calculation of χ_m as function of *J* and *T*, simulation of measured temperature-dependent susceptibilities by using e. g. Excel

van Vleck equation: note: $\frac{H}{kT} \langle \langle 1 \rangle |!!$

 $E_n = E_n^{(0)} + E_n^{(1)}H + E_n^{(2)}H^2$

$$\chi_m = N_A \cdot \frac{\sum_{n} \left[\left(\frac{E_n^{(1)^2}}{kT} - 2E_n^{(2)} \right) \cdot \exp\left(-\frac{E_n^{(0)}}{kT} \right) \right]}{\sum_{n} \exp\left(-\frac{E_n^{(0)}}{kT} \right)}$$

$$E_{n=1} = 0 + 0 \cdot \mu_{\mathsf{B}} g B$$
 $E_{n=1}^{(0)} = 0$ $E_{n=1}^{(1)} = 0$

- $E_{n=2} = -2J 1 \cdot \mu_{\mathsf{B}} g B$ $E_{n=2}^{(0)} = -2J$ $E_{n=2}^{(1)} = -\mu_{\mathsf{B}} g$
- $E_{n=3} = -2J 0 \cdot \mu_{\mathsf{B}} g B$ $E_{n=3}^{(0)} = -2J$ $E_{n=3}^{(1)} = 0$
- $E_{n=4} = -2J + 1 \cdot \mu_{\mathsf{B}} g B$ $E_{n=4}^{(0)} = -2J$ $E_{n=4}^{(1)} = \mu_{\mathsf{B}} g$

$$\chi_m = N_A \cdot \frac{\left[\left(\frac{0}{kT}\right) \cdot \exp\left(-\frac{0}{kT}\right)\right] + \left[\left(\frac{\mu_B^2 g^2}{kT}\right) \cdot \exp\left(\frac{2J}{kT}\right)\right] + \left[\left(\frac{0}{kT}\right) \cdot \exp\left(\frac{2J}{kT}\right)\right] + \left[\left(\frac{\mu_B^2 g^2}{kT}\right) \cdot \exp\left(\frac{2J}{kT}\right)\right]}{\exp\left(-\frac{0}{kT}\right) + \exp\left(\frac{2J}{kT}\right) + \exp\left(\frac{2J}{kT}\right) + \exp\left(\frac{2J}{kT}\right)}$$

$$\chi_m = N_A \cdot \frac{\left[\left(\frac{\mu_B^2 g^2}{kT}\right) \cdot \exp\left(\frac{2J}{kT}\right)\right] + \left[\left(\frac{\mu_B^2 g^2}{kT}\right) \cdot \exp\left(\frac{2J}{kT}\right)\right]}{1 + 3 \cdot \exp\left(\frac{2J}{kT}\right)}$$

$$\chi_m = \frac{N_A \mu_B^2 g^2}{kT} \cdot \frac{\left[2 \cdot \exp\left(\frac{2J}{kT}\right)\right]}{1 + 3 \cdot \exp\left(\frac{2J}{kT}\right)}$$

Bleaney-Bower equation for $S_1 = \frac{1}{2}$, $S_2 = \frac{1}{2}$ system; other spin systems: C.J.O'Conner, *Prog. Inorg. Chem.* **1982**, *29*, 203-283

4. Super Exchange Mechanism 4.1. Fundamental Considerations

interactions between paramagnetic centers

through overlap of metal d-orbitals with orbitals of the bridging ligands

of metal d-orbitals

4.2. Anderson Model

orthogonalization of the two localized orbitals $\psi_{\text{A}} \, \text{and} \, \psi_{\text{B}}$:

ground state configuration:

turn on electron-electron Coulomb repulsion:

"Hund's in the molecule": ferromagnetic interaction as in O2

• charge transfer excited configurations excited configurations by intramolecular electron transfer

- these configurations are of course at higher energy
- there are only singlet configurations
- turn on electron-electron Coulomb repulsion
- symmetrize

 β : transfer intergral: transfer of an electron from one site to the other *through bonds*

$$\beta = \langle \Psi_A | \hat{H} | \Psi_B \rangle \quad mit \quad \Psi_A : A^{\bullet} - B$$
$$\Psi_B : A - B^{\bullet}$$

> the stronger the bonds, the larger β , the larger the antiferromagnetic contribution

 $\beta \propto -S$ S: overlap integral

> are the magnetic orbitals orthogonal $\rightarrow S = 0 \rightarrow \beta = 0$ only ferromagnetic contribution remains

4.3. Goodenough-Kanomori-Rules

- 1. The overlap of magnetic orbitals of two metal centers with an overlap integral $S \neq 0$ yields an antiferromagnetic interaction.
- 2. Are the overlapping magnetic orbitals orthogonal, the overlap S = 0 and the interaction is ferromagnetic.
- 3. The non-orthogonal overlap of a magnetic orbital of one metal center with a filled or empty orbital of the other metal center yields a ferromagnetic interaction

4.4. Kahn's Model of the Natural Magnetic Orbitals NMO's

- exchange interactions represents the limit of weak chemical bonding
- the chemist like to explain chemical bonding by the overlap of localized orbitals
- orthogonalized magnetic orbitals are not localized

natural magnetic orbitals:

NMO a is the singly occupied MO in the AX fragment NMO b is the singly occupied MO in the XB fragment

Exchange coupling arises of overlap of NMO's:

 $J = 2k + 4\beta S$

- ET excited states of Anderson's model energetically too high (e.g. Cu^ICu^{III}, Fe^{II}Fe^{IV}); here: ground configuration phenomenon
- strong antiferromagnetic coupling would need lower energy excited states

4.5. Examples

Fe-OH_n-Fe systems

Cu(OH)₂Cu Hatfield and Hodgson

magneto-structural correlation

Cu(OH) ₂ Cu complex	Cu-O-Cu / °	$J/ \text{ cm}^{-1}$
[Cu(bipy)OH] ₂ (NO ₃) ₂	95.5	+172
[Cu(bipy)OH] ₂ (ClO ₄) ₂	96.6	+93
[Cu(bipy)OH] ₂ (SO ₄) [.] 5H ₂ O	97	+49
β -[Cu(dmaep)OH] ₂ (ClO ₄) ₂	98.4	-2.3
[Cu(eaep)OH] ₂ (ClO ₄) ₂	98.8; 99.5	-130
$[Cu(2miz)OH]_2(ClO_4)_2:2H_2O$	99.4	-175
<i>α</i> -[Cu(dmaep)OH] ₂ (ClO ₄) ₂	100.4	-200
[Cu(tmen)OH] ₂ (ClO ₄) ₂	102.3	-306
[Cu(tmen)OH] ₂ (NO ₃) ₂	101.9	-367
<i>α</i> -[Cu(teen)OH] ₂ (ClO ₄) ₂	103.0	-410
β -[Cu(teen)OH] ₂ (ClO ₄) ₂	103.7	-469
[Cu(tmen)OH] ₂ Br ₂	104.1	-509

 $J = -74 \alpha + 7270$

J = 0	for α = 97.5°	
<i>J</i> < 0	for α > 97.5°	antiferromagnetic
<i>J</i> > 0	for α < 97.5°	ferromagnetic

 $J = 2k + 4\beta S$

 $\alpha = 90^{\circ}$ $4\beta S = 0$ J = 2k

 $\alpha
ightharpoonup 4\beta S
ightharpoonup stronger antiferromagnetic contribution$