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1. Introduction

• One of the prime theoretical interests in frustrated quantum magnets lies in the possibility that they might
exhibit disordered quantum paramagnetic states and/or spin-liquid behaviour. Among the most highly
frustrated systems are those composed of tetrahedra coupled into 2D or 3D lattice networks. Prominent
among the latter are the pyrochlores, whose basic structure is one of vertex-sharing tetrahedra.

• Using the coupled cluster method (CCM) we study the zero-temperature ground-state phase diagram of
the spin-12 anisotropic planar pyrochlore (or crossed chain) model [1].

• The CCM is one of the most powerful and most universally applicable techniques of quantum many-body
theory. It has been applied successfully to many lattice quantum spin systems [2,3]. Two of the unique
strengths of the CCM are:

– its ability to deal with highly frustrated systems as easily as unfrustrated ones, and

– its use from the outset of infinite lattices, which leads in turn to its ability to yield accurate phase
boundaries even near quantum critical points.

2. The J1–J2 checkerboard model

H = J1

∑

〈i,j〉

si · sj + J2

∑

〈〈i,k〉〉

si · sk .

• The model is equvalently described as a frustrated J1–J2 Heisenberg antiferromagnet (HAFM) on the
2D checkerboard lattice, with nearest-neighbour exchange bonds of strength J1 > 0 and next-nearest-
neighbour bonds of strength J2 ≡ κJ1 > 0.

• Special cases:

� κ = 0 ↔ square-lattice HAFM

� κ = 1 ↔ isotropic checkerboard lattice HAFM

� κ → ∞ ↔ decoupled 1D HAFM chains

(a) (b) (c)

(a) Néel state, (b) striped state - columnar and (c) Néel∗ state. The NN J1 bonds are shown as solid
(black) lines and the NNN J2 bonds are shown as dashed (blue lines).

•Energy scale: Henceforth we set J1 ≡ 1.

•Classical ground states:

N κ < 1 ↔ Néel state

N κ > 1 ↔ infinitely degenerate family of AFM (crossed) diagonals, from which the fourfold set of (row
and columnar) striped states and (doubly degenerate) Néel∗ states are selected by quantum
fluctuations to O(1/s)

• Using the above 3 antiferromagnetic (AFM) classical ground states as CCM model or reference states we
present results for the gs energy, average on-site magnetization, susceptibilities to plaquette valence-bond
crystal (PVBC) and crossed-dimer valence-bond crystal (CDVBC) ordering.

4. GROUND-STATE ENERGY AND MAGNETIZATION (J1 = 1)
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• Our calculations show that the AFM quasiclassical state with Néel ordering is the gs phase for
κ < κc1

≈ 0.80 ± 0.01, but that neither the striped nor Néel∗ states that form the gs phase for the
classical version (s → ∞) of the model (for κ > 1) survive the quantum fluctuations to form a stable
magnetically-ordered gs phase for the s = 1

2 case.

3. CCM Formalism

•General formalism

HeS|Φ〉 = EeS|Φ〉 ; 〈Φ|S̃e−SH = E〈Φ|S̃e−S ,

S =
∑

I 6=0 SIC
+
I ; S̃ = 1 +

∑
I 6=0 S̃IC

−
I .

� |Φ〉 ↔ model state. C+
I and C−

I ≡ (C+
I )† ↔ complete set of multiparticle creation and destruction

operators, where C+
0 ≡ 1 ≡ C−

0 and C−
I |Φ〉 = 0 = 〈Φ|C+

I ; ∀I 6= 0.

� I ↔ multi-configurational set-index.

� The ket- and bra-state correlation coefficients (SI , S̃I) are calculated by requiring the energy expectation
value H̄ ≡ 〈Ψ̃|H|Ψ〉 to be minimized with respect to each of them ⇒

〈Φ|C−
I e−SHeS|Φ〉 = 0 ; 〈Φ|S̃e−S[H,C+

I ]eSC+
I |Φ〉 = 0 ; ∀I 6= 0 ,

and the ground-state (gs) energy is given by

E = 〈Φ|e−SHeS|Φ〉 .

•Specific formalism for quantum spin-lattice systems

N In order to treat each site identically, we perform a mathematical rotation of the local axes of each spin
so that all spins on each model state align along the negative z axis. In the rotated frames, we have
|Φ〉 = | ↓↓↓ · · · 〉, and C+

I → s+
i1
· · · s+

ik
(where on each lattice site in we have at most one spin-raising

operator for s = 1/2).

N The order parameter is the average local on-site magnetization,

M ≡ −
1

N
〈Ψ̃|

∑N
i=1 sz

i |Ψ〉 ; where sz
i is expressed in the local rotated spin coordinates.

•Approximation schemes to truncate the expansions of S and S̃

•LSUBm: includes all multi-spin-flip configurations defined over all lattice animals of size ≤ m.

• Number of LSUBm fundamental configurations, Nf :

Method Nf
Néel striped Néel∗

LSUB4 27 54 79
LSUB6 632 1225 2441
LSUB8 21317 41324 86590
LSUB10 825851 1598675 3373495

•Extrapolations: The results are extrapolated heuristically to the m → ∞ limit as,

E(m)/N = a0 + a1m
−2 + a2m

−4

M (m) = b0 + b1m
−1 + b2m

−2 ; LSUB∞(1) ↔ for non-frustrated spin systems, and

M (m) = c0 + b1m
−1/2 + a2m

−3/2 ; LSUB∞(2) ↔ for highly fustrated spin systems.
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5. VALENCE-BOND CRYSTAL (VBC) SUSCEPTIBILITIES
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H → H + F ; F ≡ δ Ô
Ô ↔ red bonds (+), blue bonds (−)
E → E(δ) ; e(δ) ≡ E(δ)/N

χF ≡ −(∂2e(δ))/(∂δ2)|δ=0
CDVBC susceptibility

LSUB∞(1) ↔ χ−1
F (m) = x0 + x1m

−2 + x2m
−4 ; LSUB∞(2) ↔ χ−1

F (m) = y0 + y1m
−y2

•We show that the quasiclassical Néel state becomes infinitely susceptible to PVBC ordering at or very
near to κ = κc1

, and that the quasiclassical fourfold AFM states become infinitely susceptible to PVBC
ordering at κ = κc2

≈ 1.22 ± 0.02.

• In turn, we find that these states become infinitely susceptible to CDVBC ordering for all values of κ
above a certain critical value at or very near to κ = κc2

. Our calculations thus indicate a Néel-ordered gs
phase for κ < κc1

, a PVBC-ordered phase for κc1
< κ < κc2

, and a CDVBC-ordered phase for κ > κc2
.

Both transitions are likely to be direct ones, although we cannot exclude very narrow coexistence regions
confined to 0.79 . κ . 0.81 and 1.20 . κ . 1.22 respectively.


