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magnetic separation

identical and non-interacting magnetic particles.

eoretical modeling
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Microscopic description : spin Hamiltonian

Anisotropic exchange and dipole-
dipole interactions

Antisymmetric (DM)
exchange
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Heterometallic wheel Cr/Ni

. . : . : The spectrum is composed
Isotropic exchange is the dominant interaction > of total-spin multiplets split

by magnetic anisotropy
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PRB 71, 174407 (2005).
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Heterometallic wheel Cr/Ni
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J(Cr-Cr)/meV

J(Cr-Ni)/meV

D(Cr)/meV

D(Ni)/meV

1.46
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Inelastic neutron scattering studies of Cr;Ni

under magnetic field
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Macroscopic measurements on Cr;Ni

Magnetometry and specific heat measurements are very well reproduced too.
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FIG. 2: {a): solid lines : calculated torque ws the applied field
intensity B for Crs (T = 50 mK), CryZn and CryNi1 (T = 400
mHK). Dashed lines : the same for CrrZn and CryNi with S-
mixing forced to zero. (b): Experimental results for the same
conditions as in (a).

Specific heat, PRL 94, 207208 (2005)
Torque, PRB 72, 060403(R) (2005)



Relaxation dynamics of CroNi: *H NMR

We have investigated phonon-induced relaxation of Cr,Ni by modelling 1/T; NMR and
EPR measurements.
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Data from pulsed EPR

o PRB 82, 134403 (2010)
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EPR from A. Ardavan et al., PRL 98, 057201 (2007)
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Numerical simulation:

evolution of the s
molecule, initially p
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Numerical simulations of quantum gates
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Simulated time
evolution of the spin state of a single Cr Ni
molecule, initially prepared in |0>, under the effect
of a transverse magnetic field with a Gaussian
temporal profile. The black, red, and blue lines
correspond to |cyl?, |c4/> and the ‘leakage” L
(multiplied by a factor 107). The static field is B =
2T.

Actual measured
decoherence time of Cr,Ni:

15 us at T=2 K. C. J. Wedge et
al., PRL 108, 107204, (2012).

Master-equation
irreversible dynamics

Decoherence "
Nuclear Zeeman splittings

Molecular qubit
gating times

Schroedinger-equation
reversible dynamics

Inelastic neutron
scattering
Anisotropic interactions

Isotropic exchange

PRL 94, 207208 (2005).
PRL 94, 190501 (2005).
PRB 76 024408 (2007).

Gating times (a few ns) are much shorter than the measured

decoherence time!
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Controlled multipartite entanglement

By a sequence of e.m. pulses it is possible to bring the trimer from its factorized (FM)
ground state to a maximally-entangled
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Nature Nanotech.
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Entanglement in coupled a

PRL 104, 0
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For a system of exchange-coupled spins the value of the magnetic

susceptibility, averaged over three orthogonal directions, represents an
entanglement witness:

For T< 50 mK the density matrix of the two effective spins S=1/2 is non-
factorizable, there is entanglement between the two rings.

PRL 104, 037203 (2010)



Molecular nanomagnets as guantum
simulators

The simulation of quantum systems by a classical computer is intrinsically
inefficient because the required number of bits grows exponentially with the

system size.

QUANTUM SIMULATORS: encode the information in a hardware which
operates according to gquantum mechanics and whose dynamics can be
controlled to mimic the evolution of the target system.

IDEA: using a chain of molecular qubits as a quantum simulator
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Use a sequence of uniform em pulses to simulate the time evolution of

Three-step procedure:

1) The target Hamiltonian is mapped onto a one-dimensional hamiltonian
describing interacting spin 4.

2) The states of each Y2 spin are mapped onto the states of a qubit

3) The time evolution is simulated by exploiting a suitable sequence of
uniform em pulses.



(e.g., Transverse Field Ising Model)

H=A1 Zi Siz S(i+1)z +bzl Six— H(Z)even + H(Z)odd +HD

Here the two states of each qubit directly encode the two states of each
spin, and we would like the wavefunction of our chain of qubits to evolve

as that of the TIM.

The hardware Hamiltonian is very different from the Transverse Field Ising
Model. How we can exploit our qubits to perform the simulation?



We approximate the time-evolution operator of the TIM by the Trotter-Suzuki
formula

For very small t the Zeeman (H,) time evolution occurs independently of
the Ising evolution (H,), which In turn can be factored in even- and odd-

bond contributions.

 During the Zeeman evolution gubits behave as noninteracting units
evolving in the same way and in parallel.

« The Ising terms requires a two-body evolution, in which each pair of
qubits evolves in the same way, and independently of all the others.

‘ some kind of switchable interaction between adjacent qubits
IS needed.
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When the dimer is in the S = 0 singlet, the qubits behave as non-
interacting. In higher-lying levels the dimer is in the S = 1 triplet and the
levels are split by the non vanishing J.



These splitting 0 qubits evolve as
that of two spi -

corresponds to a single-qubit rotation, and can be implemented
through an em pulse resonant with the Zeeman gap

The two-qubit evolution ﬂ can be implemented through two
simultaneous n pulses, resonant with the gaps indicated by arrows, followed

by a repetition of the two pulses that bring the dimer back to its singlet ground
State.

PRL 107, 230502 (2011)



These splittings can be exploited to make the state of the two qubits evolve as
that of two spin %2 experiencing a physical interaction

T is the actual operation time
of the hardware

At the end of the pulse
sequence R vanishes. The
state of our qubits matches the
evolved state of the target
Hamiltonian

WA naaanie Much shorter than the |
T (ns) expected decoherence time

R measures the deviation from the target evolution operator

U.i(T) = (1;]0:(T)
PRL 107, 230502 (2011)

R = Jr}l-fi-iﬂ-i?jl(jrj'i - (’I’H (T)lg



-—~— Trotter n=20

80 100 120 140 160 180
T (ns)

Exploting uniform _em pulses a NN s=1/2 AB Hamiltonian can be
simulated

H = Hoga+ Heven = Y Vi (ivi+1) + V.3 (i)
odd i

+ Z Igvze}ﬂ(?* i+ 1) + Ii’(r}gn (I]

even i

« The simulation time does not depend on the lenght of the chain

« Possible proof-of-principle experiment: simulation of TIM on a trimer

TNs evdllution isings assegdiymdedlatiofsctd tize drRigneitzitgiatevioose
freduieaciesarangideydhesnergy gaps of the TIM.



Simulating S = 1 spins

A chain of spins one (t,) with NN exchange interactions and single-spin
crystal-field anisotropy:

The dynamics of a spin-1 chain Is equivalent to that of a dimerized spin-1/2
chain with twice the number of spins, provided one of the two isotropic
exchange constant (l.,,) IS ferromagnetic and dominant.

Lo, 1.1

ivo Yax b

By exploiting the Wigner-Eckart theorem, the crystal-field terms are mapped
onto axial (I,) and rhombic (l,) exchange terms. | is proportional to A



Simulating S = 1 spins

A chain of spins one (t,) with NN exchange interactions and single-spin
crystal-field anisotropy:

Having mapped H,, onto a chain of spins 1/2 with NN interactions, we can now
simulate its dynamics as before.
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A simple proof-of-principle experiment: simulation of a
S = 1 spin experiencing tunneling of the magnetization
(using a crystal of qubit-dimer-qubit units).

exact
® simulation

The duration T, of the pulse sequence implementing the simulation is
about 480 ns

It can be monitored by measuring the total magnetization M of the crystal

PRL 107, 230502 (2011)



Fermions: the one-dimensional Hubbard model

Hygup = —t Z(:CLJCR:—"]-J + h.c.)+U Z NNk

ko k

The occupation numbers (0 or 1) of the orbitals iIs mapped to the states of
the qubits.

By exploiting the Jordan-Wigner representation

N-—-1
Huaww = NU/A=2t ) Y (SkaS@t1)a + kal(41)a)

k=1 a=xz.y

N N
+ U il +U/2Y (12 + liz)
k=1 k=1



N-—-1
Haw = NU/A=2t> Y (SkaStt)a + lkal(er1)a)

k‘:]_ =TI,

N N
+ UZ Skzlp. +U/2 Z(th + lkz) (6)
k=1 =1

The state of the s and | spins is encoded In the state of the molecular qubits
In an alternating pattern

This Hamiltonian can be then simulated with the same method as before by
exploiting uniform em pulses.

PRL 107, 230502 (2011)



Grafting Cr7Ni on Au surfaces

A. Ghirri, et al., ACS Nano. 2011,
5, 7090.

The Cr7Ni-bu derivative on Au(111) forms a highly ordered 2D hexagonal layer.

X-ray absorption spectra measured at the Cr and Ni edges show that the
grafting does not affect the oxidation state and the local symmetry of the Cr
and Ni sites.
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Cr7Ni rings grafted on Au surfaces preserves the
structure of their magnetic Hamiltonian
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Conclusions

« Cr,Ni antiferromagnetic rings have a level scheme . ,
and eigenfunctions suitable for qubit encoding and 2 /¢ ool
manipulation. T 5 Sh

Arrays of molecular nanomagnets can be used as quantum

simulators of different 1-D model Hamiltonians (including spin 1 and
fermionic systems).
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We have proposed proof-of-principle implementations, where the means
required for manipulating the system and measuring the relevant
observables can be provided by the current technology.

« This approach allows the simulation of a much larger class of
Hamiltonians, including higher-dimensional and inhomogeneous ones.



