Electron Transport Through Single-Molecule Magnets

Maarten R. Wegewijs, Christian Romeike, Herbert Schoeller
Institute for theoretical physics A – RWTH Aachen

cond-mat/0510732

Mesoscopic transport

Molecules Surface

V_{bias}

V_{gate}

H. Heersche, Z. de Groot, J. Folk, H. van der Zant
Kavli Institute for Nanoscience, Delft, Netherlands

L. Zobbi, D. Barrecca, E. Tondello, A. Cornia
University of Modena, Italy
(1) Transport through single molecules
 • Experimental setups
 • Theoretical framework

(2) Spin effects in transport through single molecule magnets (SMM):
 • Magnetic excitations
 • Magnetic & low-lying electronic excitations

Experiment
Experimental approaches

Mechanically-Controlled Break Junction (MCBJ)

- Strong tunnel coupling
- Stable contact: high voltage and current levels
- Controlled contact: stretch, rebond “symmetrize” tunnel coupling
- Good statistics possible

Electro-Migrated Junction (EMJ)

- Gate voltage: identification of resonances
- Weak / moderate tunnel coupling
- Very low temperature T (~ 50 mK)

*STM: no gate and asymmetric
Mechanically Controlled Break Junction

J. van Ruitenbeek
M. Reed
J. P. Bourgoin
H. Weber

Symmetry of molecule

Gate-effect by sidegroups

Intramolecular conjugation

Courtesy H. Weber
Electro-Migrated Junction

J. W. Park
P. McEuen
D. Ralph
H. K. Park
H. van der Zant
Theory - setup

electrode L

gate

electrode R
Current spectroscopy

\[E_0 \quad \Delta_0 \quad E_1 \quad \Delta_1 \]

charge 0 \hspace{1cm} charge \ -e

\[\text{electrode L} \quad \text{gate} \quad \text{electrode R} \]

\[(E_1 + \Delta_1) - E_0 \]

\[E_1 - E_0 + \Delta_1 - \Delta_0 \]

\[E_1 - E_0 \]

\[E_1 - (E_0 + \Delta_0) \]

\[\mu_L \quad \mu_R \]
Current spectroscopy

2 Excitation spectra

Energy conservation
Amplitudes \sim wavefunction
Non-equilibrium occupations

2 Charge states

Δ_1
E_1
E_0
Δ_0

"irrelevant"
Energy scales

Higher order processes:
\[\Gamma \sim T \]

Temperature
\[T \sim 50 \text{ mK} - 5 \text{ K} \]
\[\sim 0.005 - 0.5 \text{ meV} \]

Excitations
- Vibrational \(\sim 1 - 100 \text{ meV} \)
- Magnetic \(\sim < 5 \text{ meV} \)

Addition energy
\(U \sim \delta > 100 \text{ meV} \)

Tunnel coupling
\(I \sim 0.5 \text{ nA} \)
\[\Gamma \sim 0.1 \text{ meV} \]

Fingerprint of single-molecule transport

Coulomb effect + Energy quantization

\[E_1 - E_0 \]
\[E_0 - E_{-1} \]
Systematic approach

Model-based
Perturbative in tunnel coupling Γ

Theoretical starting point:
1st order: sequential tunneling
2nd order: co-tunneling

....
Non-perturbative: Kondo-tunneling

“\textbf{Ab-initio} molecular non-equilibrium \textit{transport theory}”

No DFT yet \textit{in principle} for non-equilibrium
Mean-field strong interactions effects
Sequential tunneling transport

\[\frac{dp_a}{dt} = 0 = \sum_b \{ W_{a\rightarrow b} p_b - W_{b\rightarrow a} p_a \} \]

Probabilities

Current

\[I^L = \sum_{ab} W_{a\rightarrow b}^L p_b - \sum_{ab} W_{b\rightarrow a}^L p_a \]

Golden rule rates

\[W_{a\rightarrow b} = W_{a\rightarrow b}^L + W_{a\rightarrow b}^R \]

\[W_{a\rightarrow b}^\alpha = \Gamma_{ab}^\alpha f_\alpha (E_a - E_b) \quad \alpha = L, R \quad \text{for} \quad N_a > N_b \]

\[W_{a\rightarrow b}^\alpha = \Gamma_{ba}^\alpha (1 - f_\alpha (E_b - E_a)) \quad \text{for} \quad N_a < N_b \]

\[\Gamma_{ab}^\alpha = 2\pi \sum_{k\sigma} |t_{k\alpha}|^2 \delta (E - \epsilon_{k\alpha}) \times \sum_{i\sigma} \left| \langle a | d_{i\sigma}^{\text{dag}} | b \rangle \right|^2 \]

Spin-blockade of electron tunneling:

rate = 0 unless
\[|S-S'|=1/2 \text{ and } |M-M'| =1/2 \]

Electron tunneling rate

- Spin selection rules
- Orbital symmetry
- Nuclear wavefunction overlap (Franck-Condon factors)
Sequential tunneling transport

A. Thielmann, M. H. Hettler, J. König, G. Schön

Conditional-probabilities

\[0 = WP \]

Zero-frequency current noise

\[S(\omega=0) = e^T(W p + WPW p) \]

Schottky term \(\sim V \)
Thermal noise (fluctuation-dissipation)

Golden rule rates

Slow processes:
- Suppressed current
- Enhanced noise
Molecular Magnetism:
Access magnetic excitations in *multiple charge states*
Create *non-equilibrium* magnetic states

- *Hidden resonances*
- "Fake" resonances
- Negative dI/dV
- Current & noise oscillations
- Current suppression

Tunneling transport through single molecule magnets (SMM)

* e.g. Mn12, \(S=10 \)
Single Molecular Magnet (SMM)

Large S

Molecular:
- No preferred direction
- Easy-plane anisotropy
 - Discrete molecular symmetry

Quantum Tunneling of Magnetic moment (QTM)

Identifiable transport effects of QTM?
- weak perturbation
- forbidden for $S=n+\frac{1}{2}$

Electronic control of magnetic states?
Experimental motivation

\[\text{Mn}_{12}\text{O}_{12}\left(\text{O}_2\text{C-} \text{C}_6\text{H}_4\text{-SAc}\right)_{16}\left(\text{H}_2\text{O}\right)_{4} \]

-1

-0.5

0.0

0.5

\(V_{\text{bias}} \) [mV]

0

10

\(V_{\text{gate}} \) [V]

T = 3K

T = 1.5 K

Current suppression up to 5 meV

diamond edge - PDC - NDC @ 2.5 meV

Multiple stable devices

Reproducible features

16 meV

~ 5 meV

Two measurement setups

H. Heersche, Z. de Groot, J. Folk, H. van der Zant
Kavli Institute of Nano Science, Delft

L. Zobbi, D. Barrecca, E. Tondello, A. Cornia
University of Modena, Italy
Magnetic excitations: Magnetic Anisotropy Barrier (MAB)

\[H_{\text{MAB}} = -D N S_z^2 \]

Tunneling \(\Rightarrow \) spin selection rule for \(S \) and \(S_z \)

Charge-induced “magnetic distortion”
Sessoli 93, Takeda 97, Aubin 99, Soler 00 & 01
Kuroda-Sowa 01, Coronado 04
Magnetic excitations: (QTM) Quantum Tunneling of Magnetic moment

\[H_{MAB} = -D_N S_z^2 \]

\[H_{QTM} = \frac{1}{2} B_2 (S_-^2 + S_+^2) + \frac{1}{2} B_4 (S_-^4 + S_+^4) \]
QTM effect on non-linear transport?

Numbers: (~ Mn12)

\[
\begin{align*}
S & \sim 10 \\
D & \sim 5 \times 10^{-2} \text{ meV} \\
B_2 & \sim 1 \times 10^{-4} \text{ meV}
\end{align*}
\]

Small energy scale but violates selection rule!

Lifts a strong restriction on non-equilibrium occupations magnetic states

Magnetic anisotropy barrier \(\sim D S^2 \sim 5 \text{ meV}\)

Electronic Excitations \(\sim 5 \text{ meV}\)
Magnetic & *electronic* excitations

\[H_{MAB} = -D_{N\alpha} S_z^2 + \Delta_{N\alpha} \delta_{\alpha 1} \]

\[H_{QTM} = \frac{1}{2} B_2 (S_-^2 + S_+^2) \]

\(N=0 \)
\(\alpha = 1 \)
\(\alpha = 0 \)
\(B_2 \)
\(\Delta_0 \)

\(N=1 \)
\(S=9\frac{1}{2} \)

Low-symmetry QTM $B_2 \gg B_4$

$N=0$

S

B_2

D

$N=1$

$S-\frac{1}{2}$

B_2

D'

or $S+\frac{1}{2}$
Hidden lines: $D=D', B_2=0$

Eigenstates: S, S_z approximately good quantum numbers

$|S_z|$

Hidden transitions:
initial states cannot be occupied at the transition energy

Inverted parabola + spin selection rules

General result for $D=D'$ and any spin S

Only 2 current steps
Others hidden
NDC and “fake” lines: $D = D', B_2 > 0$

QTM:
“fake” resonance lines + negative resonance
Hidden lines: $D > D'$, $B_z = 0$

Charge-induced "magnetic distortion"

Anisotropy barrier different in 2 charge states
⇒ more transition lines appear
NDC and "fake" lines: $D > D', B_2 > 0$

Charge-induced "magnetic distortion"

\[\left| S_z \right| \]

\[0 \]

\[D \]

\[T \times 1.5 \]

\[1 \]

\[3D \]

\[2D' \]

\[2 \]

\[3/2 \]

QTM x 0.01

\[S=2 \]

\[S=3/2 \]

QTM: "fake" resonance lines + negative resonance
NDC and “fake” lines: $D > D', \ B_2 \neq 0$

D fixed
B_2 varied

“Fake” resonances shift with QTMeven though addition spectrum is not altered!

Negative Differential Conductance (NDC): associated with “fake” lines (black resonance)
QTM affects populations

\[\frac{\Gamma_{\text{forbidden}}}{\Gamma_{\text{allowed}}} \sim (\frac{B_2}{D})^2 \]

Excitation depleted already before transition energy reached

\[\sim \Gamma_{\text{allowed}} e^{(\Delta E-V)/kT} \]

Weak violation of spin selection rule

\[\Rightarrow \]

Line moves downwards:
- decreasing QTM
- increasing temperature

\[B_2 = 10^{-5} \]
QTM-induced current oscillations

(1) Negative conductance resonances: map out anisotropy barriers

(2) Positive resonances shift with T: extract B_2

...even though QTM-splittings cannot be resolved!
Noise identifies “fake” resonances

\[\frac{dI(V)}{dV} \]

\[\frac{d \ln F(V)}{dV} \]

\[\frac{dF}{dV} > 0 \]

\[\frac{dI}{dV} < 0 \]

N=1: equal occupations

“Fake” lines terminate

Less fast spin-allowed charge transfer

More slow spin-forbidden processes

Noise enhancement ~ Negative differential conductance
High-symmetry QTM $B_4 >> B_2$

2 groups of states with different magnetic symmetry

$N=0$

$B_4 < D$

$N=1$

$B_4 \sim D'$

Level crossing: ground-state changes character
Current blockade: suppressed overlap

$B_4 < D$

$B_4 \sim D'$

$B_4 < D$

$B_4 < D'$
Magnetic & electronic excitations

$\text{Mn}_{12}\text{O}_{12}(\text{O}_2\text{C-C}_6\text{H}_4-\text{SAc})_{16}(\text{H}_2\text{O})_4$

Current suppression up to 5 meV

Diamond edge - PDC - NDC @ 2.5 meV

V_{bias} [mV]

V_{gate} [V]

T = 3 K

T = 1.5 K
2 spin-multiplets / charge state

New type of spin-blockade:
electronic excitation ~ anisotropy barrier DS^2
Spin blockade due to S_z

CCS due to bias driven population inversion between $N=-1$, $S_z = 9\frac{1}{2}$ and $S_z = 8\frac{1}{2}$

Cascade via excited state spin multiplet into blocking state of ground state spin multiplet
“Relay/Estafette” - mechanism

Sequence of blocking states
\(N=-1, S_z = 8\frac{1}{2}...\frac{1}{2} \)

Connection to experiment:
Size of blocked region \(\sim \) MAB
NDC

Cascade into higher excited states $N=1, S_z=6\frac{1}{2}$

$\Delta_1 = 0.6$

Partially consistent with experiment...

Blocking states "active" beyond some threshold
Advances and prospects in molecular magnetism

Transport spectroscopy

Magnetic excitations in multiple charge states
Non-equilibrium magnetic states:
 Detection
 Control

QTM visible in transport
Non-equilibrium shift of “fake” resonances
 Shot-noise identifies “fake” resonances
 High-symmetry $B_4 \gg B_2$
 Blocking in ground-state

Anisotropy barriers + electronic excitations
Magnetic state population inversion
 - blocking in excited states
 Persistent spin(M) - blockade

Include
 spin-relaxation